Advertisements
Advertisements
Question
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
Solution
Given that: x = 3 cosθ – 2 cos3θ and y = 3sinθ – 2 sin3θ.
Differentiating both the parametric functions w.r.t. θ
`"dx"/("d"theta) = -3 sin theta - 6cos^2theta * "d"/("d"theta) (cos theta)`
= – 3 sin θ – 6 cos2θ . (– sin θ)
= – 3 sin θ + 6 cos2θ . sin θ
`"dy"/("d"theta) = 3 os theta - 6 sin^2theta * "d"/("d"theta) (sin theta)`
= = 3 cos θ – 6 sin2θ . cos θ
∴ `"dy"/"dx" = ("dy"/("d"theta))/("dx"/("d"theta))`
= `(3 cos theta - 6 sin^2theta cos theta)/(-3sin theta + 6cos^2 theta * sin theta)`
⇒ `"dy"/"dx" = (cos theta (3 - 6sin^2theta))/(sintheta(-3 + 6 cos^2 theta))`
= `(costheta[3 - 6(1 - cos^2theta)])/(sintheta[-3 + 6cos^2theta])`
= `cot theta ((3 - 6 + 6 cos^2 theta)/(-3 + 6 cos^2theta))`
= `cot theta ((-3 + 6 cos^2theta)/(-3 + 6 cos^2 theta))`
= cot θ
∴ `"dy"/"dx"` = cot θ.
APPEARS IN
RELATED QUESTIONS
find dy/dx if x=e2t , y=`e^sqrtt`
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1−cos 2t), show that `dy/dx=β/αtan t`
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (θ – sin θ), y = a (1 + cos θ)
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`
If X = f(t) and Y = g(t) Are Differentiable Functions of t , then prove that y is a differentiable function of x and
`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`
Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.
IF `y = e^(sin-1x) and z =e^(-cos-1x),` prove that `dy/dz = e^x//2`
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
If y `= "Ae"^(5"x") + "Be"^(-5"x") "x" "then" ("d"^2 "y")/"dx"^2` is equal to ____________.