English

X = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ - Mathematics

Advertisements
Advertisements

Question

x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ

Sum

Solution

Given that: x = 3 cosθ – 2 cos3θ and y = 3sinθ – 2 sin3θ.

Differentiating both the parametric functions w.r.t. θ

`"dx"/("d"theta) = -3 sin theta - 6cos^2theta * "d"/("d"theta) (cos theta)`

= – 3 sin θ – 6 cos2θ . (– sin θ)

= – 3 sin θ + 6 cos2θ . sin θ

`"dy"/("d"theta) = 3 os theta - 6 sin^2theta * "d"/("d"theta) (sin theta)`

= = 3 cos θ – 6 sin2θ . cos θ

∴ `"dy"/"dx" = ("dy"/("d"theta))/("dx"/("d"theta))`

= `(3 cos theta - 6 sin^2theta cos theta)/(-3sin theta + 6cos^2 theta * sin theta)`

⇒ `"dy"/"dx" = (cos theta (3 - 6sin^2theta))/(sintheta(-3 + 6 cos^2 theta))`

= `(costheta[3 - 6(1 - cos^2theta)])/(sintheta[-3 + 6cos^2theta])`

= `cot theta ((3 - 6 + 6 cos^2 theta)/(-3 + 6 cos^2theta))`

= `cot theta ((-3 + 6 cos^2theta)/(-3 + 6 cos^2 theta))`

= cot θ

∴ `"dy"/"dx"` = cot θ.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 110]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 46 | Page 110

RELATED QUESTIONS

find dy/dx if x=e2t , y=`e^sqrtt`


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`


If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of  `dy/dx `at t = `pi/4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.

x = cos θ – cos 2θ, y = sin θ – sin 2θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`


If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`

Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


Evaluate : `int  (sec^2 x)/(tan^2 x + 4)` dx


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0


If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×