Advertisements
Advertisements
प्रश्न
x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ
उत्तर
Given that: x = 3 cosθ – 2 cos3θ and y = 3sinθ – 2 sin3θ.
Differentiating both the parametric functions w.r.t. θ
`"dx"/("d"theta) = -3 sin theta - 6cos^2theta * "d"/("d"theta) (cos theta)`
= – 3 sin θ – 6 cos2θ . (– sin θ)
= – 3 sin θ + 6 cos2θ . sin θ
`"dy"/("d"theta) = 3 os theta - 6 sin^2theta * "d"/("d"theta) (sin theta)`
= = 3 cos θ – 6 sin2θ . cos θ
∴ `"dy"/"dx" = ("dy"/("d"theta))/("dx"/("d"theta))`
= `(3 cos theta - 6 sin^2theta cos theta)/(-3sin theta + 6cos^2 theta * sin theta)`
⇒ `"dy"/"dx" = (cos theta (3 - 6sin^2theta))/(sintheta(-3 + 6 cos^2 theta))`
= `(costheta[3 - 6(1 - cos^2theta)])/(sintheta[-3 + 6cos^2theta])`
= `cot theta ((3 - 6 + 6 cos^2 theta)/(-3 + 6 cos^2theta))`
= `cot theta ((-3 + 6 cos^2theta)/(-3 + 6 cos^2 theta))`
= cot θ
∴ `"dy"/"dx"` = cot θ.
APPEARS IN
संबंधित प्रश्न
If `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that" dy/dx = [-99x^2]/[101y^2]`
If x=at2, y= 2at , then find dy/dx.
If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = (sin^3t)/sqrt(cos 2t), y = (cos^3t)/sqrt(cos 2t)`
If `x = acos^3t`, `y = asin^3 t`,
Show that `(dy)/(dx) =- (y/x)^(1/3)`
If X = f(t) and Y = g(t) Are Differentiable Functions of t , then prove that y is a differentiable function of x and
`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`
Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.
The cost C of producing x articles is given as C = x3-16x2 + 47x. For what values of x, with the average cost is decreasing'?
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
Differentiate `x/sinx` w.r.t. sin x
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
Derivative of x2 w.r.t. x3 is ______.
If y `= "Ae"^(5"x") + "Be"^(-5"x") "x" "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.