मराठी

X = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ - Mathematics

Advertisements
Advertisements

प्रश्न

x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ

बेरीज

उत्तर

Given that: x = 3 cosθ – 2 cos3θ and y = 3sinθ – 2 sin3θ.

Differentiating both the parametric functions w.r.t. θ

dxdθ=-3sinθ-6cos2θddθ(cosθ)

= – 3 sin θ – 6 cos2θ . (– sin θ)

= – 3 sin θ + 6 cos2θ . sin θ

dydθ=3osθ-6sin2θddθ(sinθ)

= = 3 cos θ – 6 sin2θ . cos θ

dydx=dydθdxdθ

= 3cosθ-6sin2θcosθ-3sinθ+6cos2θsinθ

dydx=cosθ(3-6sin2θ)sinθ(-3+6cos2θ)

= cosθ[3-6(1-cos2θ)]sinθ[-3+6cos2θ]

= cotθ(3-6+6cos2θ-3+6cos2θ)

= cotθ(-3+6cos2θ-3+6cos2θ)

= cot θ

dydx = cot θ.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity And Differentiability - Exercise [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 5 Continuity And Differentiability
Exercise | Q 46 | पृष्ठ ११०

संबंधित प्रश्‍न

find dy/dx if x=e2t , y=et


If x=a(t-1t),y=a(t+1t), then show that dydx=xy


If y =1 - cos θ , x = 1 - sin θ , then dydx atθ=π4  is ________


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find dydx

 

If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find dydx

 


If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)32

(B) 32

(C) 12

(D) -32


If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx

x=2at2,y=at4


If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx.

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx.

x=sin3tcos2t, y =cos3tcos2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx.

x=a(cost+logtan t2),y= asint


If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx.

x = a sec θ, y = b tan θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find dydx.

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If x=acos3t, y=asin3t,

Show that dydx=-(yx)13


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find dydx when θ=π3


If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

dydx=dydtdxdt,wheredxdt0

Hence find dydx if x = a cos2 t and y = a sin2 t.


IF y=esin-1x and z=e-cos-1x, prove that dydz=ex/2


x = eθ(θ+1θ), y= e-θ(θ-1θ)


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that (dydx)at  t=π4=ba


If x = 3sint – sin 3t, y = 3cost – cos 3t, find dydx at t = π3


Differentiate tan-1(1+x2-1x) w.r.t. tan–1x, when x ≠ 0


If x = sint and y = sin pt, prove that (1-x2)d2ydx2-xdydx+p2y = 0


Derivative of x2 w.r.t. x3 is ______.


If x = a sin θ and  y = b cos θ,then d2ydx2 is equal to ____________.


If x = a[cosθ+logtan θ2], y = asinθ then dydx = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.