Advertisements
Advertisements
प्रश्न
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
उत्तर
Given that, x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
Differentiating both the parametric functions w.r.t. θ
`"dx"/("d"theta) = "e"^theta(1 - 1/theta^2) + (theta + 1/theta)*"e"^theta`
`"dx"/("d"theta) = "e"^theta (1 - 1/theta^2 + theta + 1/theta)`
⇒ `"e"^theta ((theta^2 - 1 + theta^3 + theta)/theta^2)`
= `("e"^theta(theta^3 + theta^2 + theta - 1))/theta^2`
y = `"e"^-theta(theta - 1/theta)`
`"dy"/("d"theta) = "e"^-theta(1 + 1/theta^2) + (theta - 1/theta) * (-"e"^-theta)`
`"dy"/("d"theta) = "e"^-theta (1 + 1/theta^2 - theta + 1/theta)`
⇒ `"e"^-theta ((theta^2 + 1 - theta^3 + theta)/theta^2)`
= `"e"^-theta ((-theta^3 + theta^2 + theta + 1))/theta^2`
∴ `"dy"/"dx" = (("dy")/("d"theta))/(("d"x)/("d"theta))`
= `("e"^-theta ((-theta^3 + theta^2 + theta + 1)/theta^2))/("e"^theta ((theta^3 + theta^2 + theta + 1)/theta^2))`
= `"e"^(-2theta) ((-theta^3 + theta^2 + theta + 1)/(theta^3 + theta^2 + theta - 1))`
Hence, `"dy"/"dx" = "e"^(-2theta) ((-theta^3 + theta^2 + theta + 1)/(theta^3 + theta^2 + theta - 1))`.
APPEARS IN
संबंधित प्रश्न
If `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that" dy/dx = [-99x^2]/[101y^2]`
If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`
If x=a sin 2t(1+cos 2t) and y=b cos 2t(1−cos 2t), find `dy/dx `
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (θ – sin θ), y = a (1 + cos θ)
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = (sin^3t)/sqrt(cos 2t), y = (cos^3t)/sqrt(cos 2t)`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a sec θ, y = b tan θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
If `x = acos^3t`, `y = asin^3 t`,
Show that `(dy)/(dx) =- (y/x)^(1/3)`
IF `y = e^(sin-1x) and z =e^(-cos-1x),` prove that `dy/dz = e^x//2`
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
Derivative of x2 w.r.t. x3 is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
If y `= "Ae"^(5"x") + "Be"^(-5"x") "x" "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.