मराठी

X = eeθ(θ+1θ), y= ee-θ(θ-1θ) - Mathematics

Advertisements
Advertisements

प्रश्न

x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`

बेरीज

उत्तर

Given that, x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`

Differentiating both the parametric functions w.r.t. θ

`"dx"/("d"theta) = "e"^theta(1 - 1/theta^2) + (theta + 1/theta)*"e"^theta`

`"dx"/("d"theta) = "e"^theta (1 - 1/theta^2 + theta + 1/theta)`

⇒ `"e"^theta ((theta^2 - 1 + theta^3 + theta)/theta^2)`

= `("e"^theta(theta^3 + theta^2 + theta - 1))/theta^2`

y = `"e"^-theta(theta - 1/theta)`

`"dy"/("d"theta) = "e"^-theta(1 + 1/theta^2) + (theta - 1/theta) * (-"e"^-theta)`

`"dy"/("d"theta) = "e"^-theta (1 + 1/theta^2 - theta + 1/theta)`

⇒ `"e"^-theta ((theta^2 + 1 - theta^3 + theta)/theta^2)`

= `"e"^-theta ((-theta^3 + theta^2 + theta + 1))/theta^2`

∴ `"dy"/"dx" = (("dy")/("d"theta))/(("d"x)/("d"theta))`

= `("e"^-theta ((-theta^3 + theta^2 + theta + 1)/theta^2))/("e"^theta ((theta^3 + theta^2 + theta + 1)/theta^2))`

= `"e"^(-2theta) ((-theta^3 + theta^2 + theta + 1)/(theta^3 + theta^2 + theta - 1))`

Hence, `"dy"/"dx" = "e"^(-2theta) ((-theta^3 + theta^2 + theta + 1)/(theta^3 + theta^2 + theta - 1))`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity And Differentiability - Exercise [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 5 Continuity And Differentiability
Exercise | Q 45 | पृष्ठ ११०

संबंधित प्रश्‍न

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of  `dy/dx `at t = `pi/4`


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)` 3/2`

(B) `sqrt3/2`

(C) `1/2`

(D) `-sqrt3/2`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.

x = cos θ – cos 2θ, y = sin θ – sin 2θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = (sin^3t)/sqrt(cos 2t),  y  = (cos^3t)/sqrt(cos 2t)`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a sec θ, y = b tan θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If `x = acos^3t`, `y = asin^3 t`,

Show that `(dy)/(dx) =- (y/x)^(1/3)`


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.


Derivative of x2 w.r.t. x3 is ______.


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×