Advertisements
Advertisements
प्रश्न
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
उत्तर
Given that: x = asin2t (1 + cos 2t) and y = bcos2t (1 – cos 2t).
Differentiating both the parametric functions w.r.t. t
`"dx"/"dt" = "a"[sin2"t" * "d"/"dt" (1 + cos 2"t") + (1 + cos 2"t") * "d"/"dt" sin 2"t"]`
= a[sin 2t .(– sin 2t) + (1 + cos 2t)(cos 2t).2]
= a[2(cos22t – sin22t + 2 cos 2t]
= a[2 cos22t – sin22t) + 2 cos 2t]
= a[2 cos 4t + 2 cos 2t] ....[∵ cos 2x = cos2x – sin2x]
= 2a[cos 4t + cos 2t]
y = b cos 2t (1 – cos 2t)
`"dy"/"dx" = "b"[cos 2"t" * "d"/"dt" (1 - cos 2"t") + (1 - cos 2"t") * "d"/"dt" (cos 2"t")]`
= b[cos 2t . sin 2t.2 + (1 – cos 2t).(– son 2t).2
= b[sin 4t – 2 sin 2t - 2 sin 2t + 2 sin 2t cos 2t]
= b[2 sin 4t – 2 sin 2t]
= 2b (sin 4t – sin 2t)
∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`
= `(2"b"[sin 4"t" - sin2"t"])/(2"a"[cos 4"t" + cos 2"t"])`
= `"b"/"a" [(sin 4"t" - sin 2"t")/(cos 4"t" + cos 2"t")]`
Put t = `pi/4`
∴ `("dy"/"dx")_("at t" = pi/4) = "b"/"a" [(sin 4(pi/4) - sin 2* (pi/4))/(cos 4(pi/4) + cos 2*(pi/4))]`
= `"b"/"a" [(sin pi - sin pi/2)/(cos pi + cos pi/2)]`
= `"b"/"a" [(0 - 1)/(-1 + 0)]`
= `"b"/"a"((-1)/(-1))`
= `"b"/'a"`
Hence, `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`.
APPEARS IN
संबंधित प्रश्न
find dy/dx if x=e2t , y=`e^sqrtt`
If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and hence, find dy/dx if x=a cost, y=a sint
If x=at2, y= 2at , then find dy/dx.
If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`
If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = sin t, y = cos 2t
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`
If X = f(t) and Y = g(t) Are Differentiable Functions of t , then prove that y is a differentiable function of x and
`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`
Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.
IF `y = e^(sin-1x) and z =e^(-cos-1x),` prove that `dy/dz = e^x//2`
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`
If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`
Differentiate `x/sinx` w.r.t. sin x
If y `= "Ae"^(5"x") + "Be"^(-5"x") "x" "then" ("d"^2 "y")/"dx"^2` is equal to ____________.