मराठी

If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that dydxat tba(dydx)at t=π4=ba - Mathematics

Advertisements
Advertisements

प्रश्न

If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`

बेरीज

उत्तर

Given that: x = asin2t (1 + cos 2t) and y = bcos2t (1 – cos 2t).

Differentiating both the parametric functions w.r.t. t

`"dx"/"dt" = "a"[sin2"t" * "d"/"dt" (1 + cos 2"t") + (1 + cos 2"t") * "d"/"dt" sin 2"t"]`

= a[sin 2t .(– sin 2t) + (1 + cos 2t)(cos 2t).2]

= a[2(cos22t – sin22t + 2 cos 2t]

= a[2 cos22t – sin22t) + 2 cos 2t]

= a[2 cos 4t + 2 cos 2t]  ....[∵ cos 2x = cos2x – sin2x]

= 2a[cos 4t + cos 2t]

y = b cos 2t (1 – cos 2t)

`"dy"/"dx" = "b"[cos 2"t" * "d"/"dt" (1 - cos 2"t") + (1 - cos 2"t") * "d"/"dt" (cos 2"t")]`

= b[cos 2t . sin 2t.2 + (1 – cos 2t).(– son 2t).2

= b[sin 4t – 2 sin 2t - 2 sin 2t + 2 sin 2t cos 2t]

= b[2 sin 4t – 2 sin 2t]

= 2b (sin 4t – sin 2t)

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `(2"b"[sin 4"t" - sin2"t"])/(2"a"[cos 4"t" + cos 2"t"])`

= `"b"/"a" [(sin 4"t" - sin 2"t")/(cos 4"t" + cos 2"t")]`

Put t = `pi/4`

∴ `("dy"/"dx")_("at  t" = pi/4) = "b"/"a" [(sin 4(pi/4) - sin 2* (pi/4))/(cos 4(pi/4) + cos 2*(pi/4))]`

= `"b"/"a" [(sin pi - sin  pi/2)/(cos pi + cos  pi/2)]`

= `"b"/"a" [(0 - 1)/(-1 + 0)]`

= `"b"/"a"((-1)/(-1))`

= `"b"/'a"`

Hence, `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity And Differentiability - Exercise [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 5 Continuity And Differentiability
Exercise | Q 50 | पृष्ठ ११०

संबंधित प्रश्‍न

find dy/dx if x=e2t , y=`e^sqrtt`


If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If x=at2, y= 2at , then find dy/dx.


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`


If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of  `dy/dx `at t = `pi/4`


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`


If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`

Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


Evaluate : `int  (sec^2 x)/(tan^2 x + 4)` dx


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`


Differentiate `x/sinx` w.r.t. sin x


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×