English

If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that dydxat tba(dydx)at t=π4=ba - Mathematics

Advertisements
Advertisements

Question

If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`

Sum

Solution

Given that: x = asin2t (1 + cos 2t) and y = bcos2t (1 – cos 2t).

Differentiating both the parametric functions w.r.t. t

`"dx"/"dt" = "a"[sin2"t" * "d"/"dt" (1 + cos 2"t") + (1 + cos 2"t") * "d"/"dt" sin 2"t"]`

= a[sin 2t .(– sin 2t) + (1 + cos 2t)(cos 2t).2]

= a[2(cos22t – sin22t + 2 cos 2t]

= a[2 cos22t – sin22t) + 2 cos 2t]

= a[2 cos 4t + 2 cos 2t]  ....[∵ cos 2x = cos2x – sin2x]

= 2a[cos 4t + cos 2t]

y = b cos 2t (1 – cos 2t)

`"dy"/"dx" = "b"[cos 2"t" * "d"/"dt" (1 - cos 2"t") + (1 - cos 2"t") * "d"/"dt" (cos 2"t")]`

= b[cos 2t . sin 2t.2 + (1 – cos 2t).(– son 2t).2

= b[sin 4t – 2 sin 2t - 2 sin 2t + 2 sin 2t cos 2t]

= b[2 sin 4t – 2 sin 2t]

= 2b (sin 4t – sin 2t)

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `(2"b"[sin 4"t" - sin2"t"])/(2"a"[cos 4"t" + cos 2"t"])`

= `"b"/"a" [(sin 4"t" - sin 2"t")/(cos 4"t" + cos 2"t")]`

Put t = `pi/4`

∴ `("dy"/"dx")_("at  t" = pi/4) = "b"/"a" [(sin 4(pi/4) - sin 2* (pi/4))/(cos 4(pi/4) + cos 2*(pi/4))]`

= `"b"/"a" [(sin pi - sin  pi/2)/(cos pi + cos  pi/2)]`

= `"b"/"a" [(0 - 1)/(-1 + 0)]`

= `"b"/"a"((-1)/(-1))`

= `"b"/'a"`

Hence, `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 110]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 50 | Page 110

RELATED QUESTIONS

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = 4t, y = 4/y`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a sec θ, y = b tan θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find `dy/dx` when `theta = pi/3`


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`


If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×