English

Sin x = tt2t1+t2, tan y = tt2t1-t2 - Mathematics

Advertisements
Advertisements

Question

sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`

Sum

Solution

Given that sin x = `(2"t")/(1 + "t"^2)` and tan y = `(2"t")/(1 - "t"^2)`

∴ Taking sin x = `(2"t")/(1 + "t"^2)`

Differentiating both sides w.r.t t, we get

`cosx* "dx"/"dt" = ((1 + "t"^2) * "d"/"dt" (2"t") - 2"t" * "d"/"dt" (1 + "t"^2))/(1 + "t"^2)^2`

⇒ `cosx * "dx"/"dt" = (2(1 + "t"^2) - 2"t" * 2"t")/(1 + "t"^2)^2`

⇒ `"dx"/"dt" = (2 + 2"t"^2 - 4"t"^2)/(1 - "t"^2)^2 xx 1/cosx`

⇒ `"dx"/"dt" = (2 - 2"t"^2)/(1 + "t"^2)^2 xx 1/sqrt(1 - sin^2x)`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt(1 - ((2"t")/(1 + "t"^2))^2`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/(sqrt((1 + "t"^2)^2 - 4"t"^2)/(1 + "t"^2)^2)`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx (1 + "t"^2)/sqrt(1 + "t"^4 + 2"t"^2 - 4"t"^2)`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt(1 + "t"^4 - 2"t"^2)`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/sqrt((1 - "t"^2)^2`

⇒ `"dx"/"dt" = (2(1 - "t"^2))/(1 + "t"^2)^2 xx 1/((1 - "t"^2))`

 ⇒ `"dx"/"dt" = 2/(1 + "t"^2)`

Now taking, tan y = `2/(1 - "t"^2)`

Differentiating both sides w.r.t, t, we get

`"d"/"dt" (tan y) = "d"/"dt" ((2"t")/(1 - "t"^2))`

⇒ `sec^2y  "dy"/"dt" = ((1 - "t"^2) * "d"/"dt" (2"t") - 2"t" * "d"/"dt" (1 - "t"^2))/((1 - "t"^2)^2`

⇒ `sec^2y "dy"/"dt" = ((1 - "t"^2) * 2 - 2"
t" * (-2"t"))/(1 - "t"^2)^2`

⇒ `sec^2y "dy"/"dt" = (2 - 2"t"^2 + 4"t"^2)/(1 - "t"^2)^2`

⇒ `"dy"/"dt" = (2 + 2"t"^2)/(1 - "t"^2)^2 xx 1/sec^2y`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(1 + tan^2y)`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(1 + ((2"t")/(1 - "t"^2))^2`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx 1/(((1 - "t"^2)^2 + 4"t"^2)/(1 - "t"^2)^2)`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^2 + 2"t"^2 + 4"t"^2)`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^4 + 2"t"^2)`

⇒ `"dy"/"dt" = (2(1 + "t"^2))/(1 - "t"^2)^2 xx (1 - "t"^2)^2/(1 + "t"^2)^2`

⇒ `"dy"/"dt" = 2/(1 + "t"^2)`

∴ `"dy"/"dt" = ("dy"/"dt")/("dx"/"dt")`

= `(2/(1 + "t"^2))/(2/(1 + "t"^2))`

= 1

Hence `"dy"/"dt"` = 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 110]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 47 | Page 110

RELATED QUESTIONS

find dy/dx if x=e2t , y=`e^sqrtt`


If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If x=at2, y= 2at , then find dy/dx.


If x=α sin 2t (1 + cos 2t) and y=β cos 2t (1cos 2t), show that `dy/dx=β/αtan t`


Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`


If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.

x = cos θ – cos 2θ, y = sin θ – sin 2θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a sec θ, y = b tan θ


If `x = acos^3t`, `y = asin^3 t`,

Show that `(dy)/(dx) =- (y/x)^(1/3)`


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0


Derivative of x2 w.r.t. x3 is ______.


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×