English

X = tt1+logtt2, y = tt3+2logtt - Mathematics

Advertisements
Advertisements

Question

x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`

Sum

Solution

Given that: x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`

Differentiating both the parametric functions w.r.t. t

`"dx"/"dt" = ("t"^2 * "d"/"dt" (1 + log "t") - (1 + log "t") * "d"/"dt" ("t"^2))/"t"^4`

= `("t"^2 * (1/"t") - (1 + log "t") * 2"t")/"t"^4`

= `("t" - (1 + log "t") * 2"t")/"t"^4`

= `("t"[1 - 2 - 2 log "t"])/"t"^4`

= `(-(1 + 2 log "t"))/"t"^3`

y = `(3 + 2 log "t")/"t"`

`"dy"/"dt" = ("t" * "d"/"dt" (3 + 2 log "t") - (3 + 2 log "t") * "d"/"dt" ("t"))/"t"^2`

= `("t"(2/"t") - (3 + 2 log "t")* 1)/"t"^2`

= `(2 - 3 - 2 log "t")/"t"^2`

= `(-(1 + 2 log "t"))/"t"^2`

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `((-(1 + 2 log "t"))/"t"^2)/((-(1 + 2 log "t"))/"t"^3)`

= `"t"^3/"t"^2`

= t

Hence, `"dy"/"dx"` = t.

shaalaa.com
  Is there an error in this question or solution?
Chapter 5: Continuity And Differentiability - Exercise [Page 110]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 5 Continuity And Differentiability
Exercise | Q 48 | Page 110

RELATED QUESTIONS

If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`


If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx  at " "θ =pi/4`  is ________


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`


If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a cos θ, y = b cos θ


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = 4t, y = 4/y`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = (sin^3t)/sqrt(cos 2t),  y  = (cos^3t)/sqrt(cos 2t)`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a sec θ, y = b tan θ


If `x = acos^3t`, `y = asin^3 t`,

Show that `(dy)/(dx) =- (y/x)^(1/3)`


If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`

Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


sin x = `(2"t")/(1 + "t"^2)`, tan y = `(2"t")/(1 - "t"^2)`


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×