हिंदी

Differentiate tan-1(1+x2-1x) w.r.t. tan–1x, when x ≠ 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0

योग

उत्तर

Let y = `tan^-1 ((sqrt(1 + x^2) - 1)/x)` and z = tan–1x.

Put x = tan θ.

∴ y = `tan^-1 ((sqrt(1 + tan^2 theta) - 1)/tan theta)` and z = tan–1(tan θ) = θ

⇒ `tan ((sqrt(sec theta) - 1)/tan) = tan^-1 ((sec theta - 1)/tan theta)`

= `tan^-1 ((1/(cos theta) - 1)/((sin theta)/(cos theta))) = tan^-1 ((1 - cos theta)/sin theta)`

⇒ `tan^-1 ((2 sin^2  theta/2)/(2 sin  theta /2 cos  theta/2)) = tan^-1 ((sin  theta/2)/(cos  theta/2))`

⇒ y = `tan^-1 (tan  theta/2)`

⇒ y = `theta/2`

Differentiating both parametric functions w.r.t. θ

`"dy"/("d"theta) = 1/2 * "d"/("d"theta) (theta)` and `"dz"/("d"theta) = "d"/("d"theta) (theta)`

= `1/2 * 1`

= `1/2` and `"dz"/("d"theta)` = 1

∴ `"dy"/"dz" = ("dy"/("d"theta))/("dz"/("d"theta))`

= `(1/2)/1`

= `1/2`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ १११]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 53 | पृष्ठ १११

संबंधित प्रश्न

If  `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that"  dy/dx = [-99x^2]/[101y^2]`


If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If `x=a(t-1/t),y=a(t+1/t)`, then show that `dy/dx=x/y`


 

 If x=a sin 2t(1+cos 2t) and y=b cos 2t(1cos 2t), find `dy/dx `

 

If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`


Derivatives of  tan3θ with respect to sec3θ at θ=π/3 is

(A)` 3/2`

(B) `sqrt3/2`

(C) `1/2`

(D) `-sqrt3/2`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = 4t, y = 4/y`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = (sin^3t)/sqrt(cos 2t),  y  = (cos^3t)/sqrt(cos 2t)`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`


If `x = acos^3t`, `y = asin^3 t`,

Show that `(dy)/(dx) =- (y/x)^(1/3)`


If X = f(t) and Y = g(t) Are Differentiable Functions of t ,  then prove that y is a differentiable function of x and

`"dy"/"dx" =("dy"/"dt")/("dx"/"dt" ) , "where" "dx"/"dt" ≠ 0`

Hence find `"dy"/"dx"` if x = a cos2 t and y = a sin2 t.


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`


x = `"t" + 1/"t"`, y = `"t" - 1/"t"`


If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`


If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at  t" = pi/4) = "b"/"a"`


Differentiate `x/sinx` w.r.t. sin x


If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.


Derivative of x2 w.r.t. x3 is ______.


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If x = `a[cosθ + logtan  θ/2]`, y = asinθ then `(dy)/(dx)` = ______.


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×