Advertisements
Advertisements
प्रश्न
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
उत्तर
x = a sin 2t (1 + cos 2t)
y = b cos 2t (1 – cos 2t)
`dx/dt=2acos2t(1+cos2t)+asin2t(-2sin2t)`
`=2acos2t+2acos^2 2t-2a sin^2 2t`
`=2a cos2t+2a cos4t`
`dy/dt=-2dsin2t(1-cos2t)+bcos2t(2sin2t)`
`=-2bsin2t+2b sin2tcos2t+2b cos2t sin2t`
`=-2b sin2t+4b sin2tcos2t`
`=-2bsin2t+2bsin4t`
`(dy/dt)/(dx/dt)=(-2bsin2t+2bsin4t)/(2a cos2t+2a cos4t)`
`dy/dx=(-2bsin2t+2bsin4t)/(2a cos2t+2a cos4t)`
`|dy/dx|_(t=pi/4)=(-2bsin((2pi)/(4))+2bsin((4pi)/4))/(2a cos((2pi)/4)+2a cos((4pi)/4))`
`=>|dy/dx|_(t=pi/4)=(-2bsin(pi/2)+2bsinpi)/(2a cos(pi/2)+2a cospi)`
`=>|dy/dx|_(t=pi/4)=(-2b)/(-2a)=b/a`
`therefore |dy/dx|_(t=pi/4)=b/a`
APPEARS IN
संबंधित प्रश्न
If `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that" dy/dx = [-99x^2]/[101y^2]`
find dy/dx if x=e2t , y=`e^sqrtt`
If x=at2, y= 2at , then find dy/dx.
If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx at " "θ =pi/4` is ________
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a cos θ, y = b cos θ
If x and y are connected parametrically by the equation without eliminating the parameter, find `dy/dx`.
x = cos θ – cos 2θ, y = sin θ – sin 2θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (θ – sin θ), y = a (1 + cos θ)
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = a(cos t + log tan t/2), y = a sin t`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a sec θ, y = b tan θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = sqrt(a^(sin^(-1)))`, y = `sqrt(a^(cos^(-1)))` show that `dy/dx = - y/x`
If y = sin -1 `((8x)/(1 + 16x^2))`, find `(dy)/(dx)`
x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`
x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0
If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0
If x = t2, y = t3, then `("d"^2"y")/("dx"^2)` is ______.
If `"x = a sin" theta "and y = b cos" theta, "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
If y `= "Ae"^(5"x") + "Be"^(-5"x") "x" "then" ("d"^2 "y")/"dx"^2` is equal to ____________.
If x = `a[cosθ + logtan θ/2]`, y = asinθ then `(dy)/(dx)` = ______.
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.