Advertisements
Advertisements
प्रश्न
If x = a sin 2t (1 + cos2t) and y = b cos 2t (1 – cos 2t), find the values of `dy/dx `at t = `pi/4`
उत्तर
We have,
x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 - cos 2t)
`therefore "dx"/"dt" = "a"["sin" "2t" ."d"/"dt" (1 + "cos" "2t") + (1 + "cos" 2"t") "d"/"dt" "sin" "2t"]`
`= "a" ["sin" 2"t" . (-2 "sin" "2t") + (1 + "cos" "2t") . 2 "cos" "2t"]`
`= -2 "a" "sin"^2 "2t" + 2"a" "cos" 2"t" (1 + "cos" "2t")`
`=> "dx"/"dt" = -2"a" ["sin"^2 "2t" - "cos" "2t" (1 + "cos" "2t")]` .....(1)
and `"dy"/"dt" = "b" ["cos" "2t" . (2 "sin" "2t") + (1 - "cos" "2t") + (1 - "cos" "2t") . "d"/"dt" "cos" "2t" . "d"/"dt" "cos" "2t"]`
`= "b" ["cos" "2t" . (2 "sin" "2t") + (1 - "cos" "2t") (-2 "sin " "2t")]`
`= "2b" ["sin" "2t" . "cos" "2t" - (1 - "cos" "2t") "sin" "2t"]`
`therefore "dy"/"dx" = ("dy"/"dt")/("dx"/"dt") = ("2b" ["sin" "2t" . "cos" "2t" - (1 - "cos" "2t") "sin" "2t"])/(-2"a" ["sin"^2 "2t" - "cos" "2t" (1 + "cos" "2t")])`
`=> ("dy"/"dx")_("t" = pi/4) = - "b"/"a" ["sin" pi/2 "cos" pi/2 - (1 - "cos" pi/2) "sin" pi/2]/["sin"^2 pi/2 - "cos" pi/2 (1 + "cos" pi/2)]`
`= -"b"/"a" . (0-1)/(1 - 0) = "b"/"a"`
APPEARS IN
संबंधित प्रश्न
If `log_10((x^3-y^3)/(x^3+y^3))=2 "then show that" dy/dx = [-99x^2]/[101y^2]`
find dy/dx if x=e2t , y=`e^sqrtt`
If x=at2, y= 2at , then find dy/dx.
If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `
Find the value of `dy/dx " at " theta =pi/4 if x=ae^theta (sintheta-costheta) and y=ae^theta(sintheta+cos theta)`
If x = cos t (3 – 2 cos2 t) and y = sin t (3 – 2 sin2 t), find the value of dx/dy at t =4/π.
Derivatives of tan3θ with respect to sec3θ at θ=π/3 is
(A)` 3/2`
(B) `sqrt3/2`
(C) `1/2`
(D) `-sqrt3/2`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`
`x = 2at^2, y = at^4`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
`x = 4t, y = 4/y`
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a sec θ, y = b tan θ
If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`
x = a (cos θ + θ sin θ), y = a (sin θ – θ cos θ)
If `x = acos^3t`, `y = asin^3 t`,
Show that `(dy)/(dx) =- (y/x)^(1/3)`
The cost C of producing x articles is given as C = x3-16x2 + 47x. For what values of x, with the average cost is decreasing'?
Evaluate : `int (sec^2 x)/(tan^2 x + 4)` dx
x = `"t" + 1/"t"`, y = `"t" - 1/"t"`
If x = asin2t (1 + cos2t) and y = b cos2t (1–cos2t), show that `("dy"/"dx")_("at t" = pi/4) = "b"/"a"`
If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`
Differentiate `x/sinx` w.r.t. sin x
If x = sint and y = sin pt, prove that `(1 - x^2) ("d"^2"y")/("dx"^2) - x "dy"/"dx" + "p"^2y` = 0
Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals
Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.