हिंदी

If x = 3sint – sin 3t, y = 3cost – cos 3t, find dydxdydx at t = π3 - Mathematics

Advertisements
Advertisements

प्रश्न

If x = 3sint – sin 3t, y = 3cost – cos 3t, find `"dy"/"dx"` at t = `pi/3`

योग

उत्तर

Given that: x = 3sint – sin 3t, y = 3cost – cos 3t.

Differentiating both parametric functions w.r.t. t

`"dx"/"dt" = 3 cos "t" - cos 3"t" * 3`

= 3(cos t – cos 3t)

`"dy"/"dx" = -3 sin "t" + sin 3"t" * 3`

= 3(– sin t + sin 3t)

∴ `"dy"/"dx" = ("dy"/"dt")/("dx"/"dt")`

= `(3(- sin "t" + sin 3"t"))/(3(cos "t" - cos 3"t"))`

= `(-sin "t" + sin 3"t")/(cos "t" - cos 3"t")`

Put t = `pi/3`

`"dy"/"dx" = (- sin  pi/3 + sin 3 (pi/3))/(cos  pi/3 - cos  3 (pi/3))`

= `(- sqrt(3)/2 + sin pi)/(1/2 - cos pi)`

= `(- sqrt(3)/2 + 0)/(1/2 - (- 1))`

= `(- sqrt(3)/2)/(1/2 + 1)`

= `(- sqrt(3)/2)/(3/2)`

= `(-1)/sqrt(3)`

Hence, `"dy"/"dx" = (-1)/sqrt(3)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ ११०]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 51 | पृष्ठ ११०

संबंधित प्रश्न

If x = f(t), y = g(t) are differentiable functions of parammeter ‘ t ’ then prove that y is a differentiable function of 'x' and  hence, find dy/dx if x=a cost, y=a sint


If x=at2, y= 2at , then find dy/dx.


If `ax^2+2hxy+by^2=0` , show that `(d^2y)/(dx^2)=0`


If y =1 - cos θ , x = 1 - sin θ , then ` dy/dx  at " "θ =pi/4`  is ________


If x = a sin 2t (1 + cos 2t) and y = b cos 2t (1 – cos 2t) then find `dy/dx `

 


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx`

`x = 2at^2, y = at^4`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = sin t, y = cos 2t


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = 4t, y = 4/y`


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

x = a (θ – sin θ), y = a (1 + cos θ)


If x and y are connected parametrically by the equation, without eliminating the parameter, find `dy/dx.`

`x = a(cos t + log tan  t/2), y =  a sin t`


If `x = acos^3t`, `y = asin^3 t`,

Show that `(dy)/(dx) =- (y/x)^(1/3)`


IF `y = e^(sin-1x)   and  z =e^(-cos-1x),` prove that `dy/dz = e^x//2`


x = `"e"^theta (theta + 1/theta)`, y= `"e"^-theta (theta - 1/theta)`


x = 3cosθ – 2cos3θ, y = 3sinθ – 2sin3θ


x = `(1 + log "t")/"t"^2`, y = `(3 + 2 log "t")/"t"`


If x = ecos2t and y = esin2t, prove that `"dy"/"dx" = (-y log x)/(xlogy)`


Differentiate `x/sinx` w.r.t. sin x


Differentiate `tan^-1 ((sqrt(1 + x^2) - 1)/x)` w.r.t. tan–1x, when x ≠ 0


Derivative of x2 w.r.t. x3 is ______.


If `"x = a sin"  theta  "and  y = b cos"  theta, "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


If y `= "Ae"^(5"x") + "Be"^(-5"x") "x"  "then"  ("d"^2 "y")/"dx"^2` is equal to ____________.


Form the point of intersection (P) of lines given by x2 – y2 – 2x + 2y = 0, points A, B, C, Dare taken on the lines at a distance of `2sqrt(2)` units to form a quadrilateral whose area is A1 and the area of the quadrilateral formed by joining the circumcentres of ΔPAB, ΔPBC, ΔPCD, ΔPDA is A2, then `A_1/A_2` equals


Let a function y = f(x) is defined by x = eθsinθ and y = θesinθ, where θ is a real parameter, then value of `lim_(θ→0)`f'(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×