Advertisements
Advertisements
Question
`sin xy + x/y` = x2 – y
Solution
Given that: `sin xy + x/y` = x2 – y
Differentiating both sides w.r.t. x
`"d"/"dx" sin(xy) + "d"/"dx"(x/y) = "d"/"dx" (x^2) - "d"/"dx"(y)`
⇒ `cos xy * "d"/"dx" (xy) + (y * "d"/"dx" * x - x * "dy"/"dx")/y^2 = 2x - "dy"/"dx"`
⇒ `cos y [x * "dy"/"dx" + y * 1] + ("y"*1)/"y"^2 - x/y^2 * "dy"/"dx" = 2x - "dy"/"dx"`
⇒ `x cos xy * "dy"/"dx" + y cos xy + 1/y - x/y^2 "dy"/"dx" = 2x - "dy"/"dx"`
⇒ `x cos xy * "dy"/"dx" - x/y^2 * "dy"/"dx" + "dy"/"dx" = -y cos xy - 1/y + 2x`
⇒ `[x cos xy - x/y^2 + 1] "dy"/"dx" = 2x - y cos xy - 1/y`
⇒ `([xy^2 cos xy - x + y^2])/y^2 "dy"/"dx" = (2xy - y^2 cos xy - 1)/y`
⇒ `"dy"/"dx" = (2xy - y^2 cos xy - 1)/y xx y^2/(xy^2 cos xy - x + y^2)`
= `(2xy^2 - y^3 cos(xy) - y)/(xy^2 cos (xy) - x + y^2)`
Hence, `"dy"/"dx" = (2xy^2 - y^3 cos(xy) - y)/(xy^2 cos (xy) - x + y^2)`.
APPEARS IN
RELATED QUESTIONS
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
If x cos(a+y)= cosy then prove that `dy/dx=(cos^2(a+y)/sina)`
Hence show that `sina(d^2y)/(dx^2)+sin2(a+y)(dy)/dx=0`
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
tan–1 x
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
tan–1(x2 + y2) = a
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
Derivative of cot x° with respect to x is ____________.
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`