Advertisements
Advertisements
प्रश्न
`sin xy + x/y` = x2 – y
उत्तर
Given that: `sin xy + x/y` = x2 – y
Differentiating both sides w.r.t. x
`"d"/"dx" sin(xy) + "d"/"dx"(x/y) = "d"/"dx" (x^2) - "d"/"dx"(y)`
⇒ `cos xy * "d"/"dx" (xy) + (y * "d"/"dx" * x - x * "dy"/"dx")/y^2 = 2x - "dy"/"dx"`
⇒ `cos y [x * "dy"/"dx" + y * 1] + ("y"*1)/"y"^2 - x/y^2 * "dy"/"dx" = 2x - "dy"/"dx"`
⇒ `x cos xy * "dy"/"dx" + y cos xy + 1/y - x/y^2 "dy"/"dx" = 2x - "dy"/"dx"`
⇒ `x cos xy * "dy"/"dx" - x/y^2 * "dy"/"dx" + "dy"/"dx" = -y cos xy - 1/y + 2x`
⇒ `[x cos xy - x/y^2 + 1] "dy"/"dx" = 2x - y cos xy - 1/y`
⇒ `([xy^2 cos xy - x + y^2])/y^2 "dy"/"dx" = (2xy - y^2 cos xy - 1)/y`
⇒ `"dy"/"dx" = (2xy - y^2 cos xy - 1)/y xx y^2/(xy^2 cos xy - x + y^2)`
= `(2xy^2 - y^3 cos(xy) - y)/(xy^2 cos (xy) - x + y^2)`
Hence, `"dy"/"dx" = (2xy^2 - y^3 cos(xy) - y)/(xy^2 cos (xy) - x + y^2)`.
APPEARS IN
संबंधित प्रश्न
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
e6x cos 3x
Find the second order derivative of the function.
log (log x)
Find the second order derivative of the function.
sin (log x)
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
tan–1(x2 + y2) = a
(x2 + y2)2 = xy
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If y = `sqrt(ax + b)`, prove that `y((d^2y)/dx^2) + (dy/dx)^2` = 0.
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`