Advertisements
Advertisements
प्रश्न
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
उत्तर
Let y = (tan-1 x)2
Differentiating (1) w.r.t.x, we get,
`dy/dx = 2 tan^-1 x . 1/(1 + x^2)`
`(d^2y)/dx^2 = 2 [tan^-1 x (({1 + x^2} . 0 - 2x))/(1 + x^2)^2 + 1/ (1 + x^2). 1/ (1 + x^2)]`
`= 2 [(-2x tan^-1 x)/ (1 +x^2)^2 + 1/ (1 + x^2)^2]`
`= 2 [(-2x tan^-1 x + 1)/ (1 + x^2)^2]`
Now,
`(x^2 + 1)^2 (d^2y)/dx^2 + 2x (x^2 + 1) dy/dx`
`= (x^2 + 1)^2 . 2 [(-2x tan^-1x + 1)/ (1 + x^2)^2] + 2x (x^2 + 1). 2tan ^-1 x. 1/ (1 + x^2)`
`= -4x tan^-1 x + 2 + 4x tan^-1 x = 2`
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
e6x cos 3x
Find the second order derivative of the function.
tan–1 x
Find the second order derivative of the function.
log (log x)
Find the second order derivative of the function.
sin (log x)
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If y = 500e7x + 600e–7x, show that `(d^2y)/(dx^2) = 49y`
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"log x"`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^((2"x" + 1))`.
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = 2at, x = at2
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
sec(x + y) = xy
tan–1(x2 + y2) = a
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.
Derivative of cot x° with respect to x is ____________.
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/dx^2, "if" y = e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`