Advertisements
Advertisements
प्रश्न
If y = (tan–1 x)2, show that (x2 + 1)2 y2 + 2x (x2 + 1) y1 = 2
उत्तर
Let y = (tan-1 x)2
Differentiating (1) w.r.t.x, we get,
`dy/dx = 2 tan^-1 x . 1/(1 + x^2)`
`(d^2y)/dx^2 = 2 [tan^-1 x (({1 + x^2} . 0 - 2x))/(1 + x^2)^2 + 1/ (1 + x^2). 1/ (1 + x^2)]`
`= 2 [(-2x tan^-1 x)/ (1 +x^2)^2 + 1/ (1 + x^2)^2]`
`= 2 [(-2x tan^-1 x + 1)/ (1 + x^2)^2]`
Now,
`(x^2 + 1)^2 (d^2y)/dx^2 + 2x (x^2 + 1) dy/dx`
`= (x^2 + 1)^2 . 2 [(-2x tan^-1x + 1)/ (1 + x^2)^2] + 2x (x^2 + 1). 2tan ^-1 x. 1/ (1 + x^2)`
`= -4x tan^-1 x + 2 + 4x tan^-1 x = 2`
APPEARS IN
संबंधित प्रश्न
If y=2 cos(logx)+3 sin(logx), prove that `x^2(d^2y)/(dx2)+x dy/dx+y=0`
Find the second order derivative of the function.
tan–1 x
If y = cos–1 x, Find `(d^2y)/dx^2` in terms of y alone.
If y = 3 cos (log x) + 4 sin (log x), show that x2 y2 + xy1 + y = 0
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If ey (x + 1) = 1, show that `(d^2y)/(dx^2) =((dy)/(dx))^2`
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^5`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = log (x).
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
sec(x + y) = xy
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
If y = tan–1x, find `("d"^2y)/("dx"^2)` in terms of y alone.
Derivative of cot x° with respect to x is ____________.
If x = A cos 4t + B sin 4t, then `(d^2x)/(dt^2)` is equal to ______.
If y = tan x + sec x then prove that `(d^2y)/(dx^2) = cosx/(1 - sinx)^2`.
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
Read the following passage and answer the questions given below:
The relation between the height of the plant ('y' in cm) with respect to its exposure to the sunlight is governed by the following equation y = `4x - 1/2 x^2`, where 'x' is the number of days exposed to the sunlight, for x ≤ 3. |
- Find the rate of growth of the plant with respect to the number of days exposed to the sunlight.
- Does the rate of growth of the plant increase or decrease in the first three days? What will be the height of the plant after 2 days?
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2` if, `y = e^((2x + 1))`
Find `(d^2y)/(dx^2)` if, y = `e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^((2x + 1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
If y = 3 cos(log x) + 4 sin(log x), show that `x^2 (d^2y)/(dx^2) + x dy/dx + y = 0`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`
Find `(d^2y)/(dx^2) "if", y = e^((2x + 1))`