Advertisements
Advertisements
प्रश्न
If x7 . y9 = (x + y)16 then show that `"dy"/"dx" = "y"/"x"`
उत्तर
Given x7.y9 =(x+y)16
Taking log on both sides
Log(x7.y9) = log(x+y)16
7 log x + 9 log y - 16 log (x+y)
Differentiating w.r.t.x
`7. 1/"x" + 9. 1/"y" "dy"/"dx" = 16 . 1/("x + y") (1 + "dy"/"dx")`
`=> 7/"x" + 9/"y" . "dy"/"dx" = 16/("x + y") + 16/("x + y") "dy"/"dx"`
`=> 9/"y" "dy"/"dx" - 16/("x + y") "dy"/"dx" = 16/("x + y") - 7/"x"`
`=>"dy"/"dx" [9/"y" - 16/"x + y"] = (16 "x" - 7 ("x + y"))/("x" ("x + y"))`
`=>"dy"/"dx" [(9"x" + 9"y" - 16"y")/("y"("x" + "y"))] = (16"x" - 7"x" - 7"y")/"x (x + y)"`
`=> "dy"/"dx" [(9"x" - 7"y")/("y" ("x + y"))] = (9"x" - 7"y")/"x (x +y)"`
`=> "dy"/"dx" = (9"x" - 7"y")/("x (x + y)") xx ("y" ("x + y"))/(9"x" - 7"y") = "y"/"x"`
`=> "dy"/"dx" = "y"/"x"`
APPEARS IN
संबंधित प्रश्न
If x = a sin t and `y = a (cost+logtan(t/2))` ,find `((d^2y)/(dx^2))`
Find the second order derivative of the function.
x2 + 3x + 2
Find the second order derivative of the function.
`x^20`
Find the second order derivative of the function.
x . cos x
Find the second order derivative of the function.
log x
Find the second order derivative of the function.
e6x cos 3x
Find the second order derivative of the function.
tan–1 x
Find the second order derivative of the function.
log (log x)
Find the second order derivative of the function.
sin (log x)
If y = Aemx + Benx, show that `(d^2y)/dx^2 - (m+ n) (dy)/dx + mny = 0`
If `x^3y^5 = (x + y)^8` , then show that `(dy)/(dx) = y/x`
Find `("d"^2"y")/"dx"^2`, if y = `sqrt"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^-7`
Find `("d"^2"y")/"dx"^2`, if y = `"e"^"x"`
Find `("d"^2"y")/"dx"^2`, if y = `"x"^2 * "e"^"x"`
If x2 + 6xy + y2 = 10, then show that `("d"^2y)/("d"x^2) = 80/(3x + y)^3`
If ax2 + 2hxy + by2 = 0, then show that `("d"^2"y")/"dx"^2` = 0
tan–1(x2 + y2) = a
If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that `"dy"/"dx" * "dx"/"dy"` = 1
If x sin (a + y) + sin a cos (a + y) = 0, prove that `"dy"/"dx" = (sin^2("a" + y))/sin"a"`
The derivative of cos–1(2x2 – 1) w.r.t. cos–1x is ______.
If y = 5 cos x – 3 sin x, then `("d"^2"y")/("dx"^2)` is equal to:
If x2 + y2 + sin y = 4, then the value of `(d^2y)/(dx^2)` at the point (–2, 0) is ______.
Let for i = 1, 2, 3, pi(x) be a polynomial of degree 2 in x, p'i(x) and p''i(x) be the first and second order derivatives of pi(x) respectively. Let,
A(x) = `[(p_1(x), p_1^'(x), p_1^('')(x)),(p_2(x), p_2^'(x), p_2^('')(x)),(p_3(x), p_3^'(x), p_3^('')(x))]`
and B(x) = [A(x)]T A(x). Then determinant of B(x) ______
If x = a cos t and y = b sin t, then find `(d^2y)/(dx^2)`.
`"Find" (d^2y)/(dx^2) "if" y=e^((2x+1))`
Find `(d^2y)/dx^2 if, y = e^((2x + 1))`
Find `(d^2y)/dx^2 "if," y= e^((2x+1))`
Find `(d^2y)/dx^2` if, y = `e^(2x +1)`
Find `(d^2y)/dx^2` if, `y = e^((2x+1))`