Advertisements
Advertisements
प्रश्न
If f is continuous at x = 0, then find f (0).
Where f(x) = `(3^"sin x" - 1)^2/("x" . "log" ("x" + 1)) , "x" ≠ 0`
उत्तर
Given f is continuous at x = O
∴ f (0) = `lim_(x->0) "f(x)"`
∴ f (0) = `lim_(x->0) [(3^"sin x" - 1)^2/("x" . "log" ("x" + 1))]`
`= lim_(x->0) [(3^"sin x" - 1)^2/("sin"^2 "x") × ("sin"^2"x")/("x" . "log" ("x" + 1))]`
∴ f (0) = `lim_(x->0) ((3^"sin x" - 1)/"sin x")^2 . (("sin"^2 "x")/"x"^2)/(("x log" (1 + "x"))/"x"^2)`
∴ f (0) = `lim_(x->0) ((3^"sin x" - 1)/"sin x")^2 . (lim_(x->0)(("sin x")/"x")^2)/(lim_(x->0) [("log" (1 + "x"))/"x"])`
`= "(log 3)"^2 . (1)^2/"log e" = ("log" 3)^2 xx 1/1`
∴ f (0) = `("log 3")^2`
APPEARS IN
संबंधित प्रश्न
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
Discuss the continuity of the following functions at the indicated point(s):
(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]
For what value of k is the function
\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]
For what value of k is the function
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?
If \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is
The function f (x) = |cos x| is
If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\] then f (x) is
Find the value of k for which the function f (x ) = \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .
Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
f(x) = `{{:(|x|cos 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",", "if" x ≠ 2),("k"",", "if" x = 2):}` at x = 2
f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}` at x = 0
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
If f is continuous on its domain D, then |f| is also continuous on D.
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.