Advertisements
Advertisements
प्रश्न
f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}` at x = 0
उत्तर
We have f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}`
L.H.L. = `lim_(x -> 0^-) (sqrt(1 + "k"x) - sqrt(1 - "k"x))/x`
= `lim_(x -> 0^-) ((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x) * ((sqrt(1 + "k"x) + sqrt(1 - "k"x))/(sqrt(1 + "k"x) + sqrt(1 - "k"x)))`
= `lim_(x -> 0^-) (1 + "k"x - 1 + "k"x)/(x[sqrt(1 + "k"x) + sqrt(1 + "k"x)])`
= `lim_("h" -> 0) (2"k")/(x[sqrt(1 + "k"(0 - "h")) + sqrt(1 - "k"(0 - "h")]`
= `lim_("h" -> 0) (2"k")/(sqrt(1 - "kh") + sqrt(1 + "kh")`
= `(2"k")/2`
= k
R.H.L. = `lim_(x -> 0^+) (2x + 1)/(x - 1)`
= `lim_("h" -> 0) (2(0 + "h") + 1)/((0 + "h") - 1)`
= `lim_("h" -> 0) (2"h" + 1)/("h" - 1)`
= – 1
Also f(0) = `(2 xx 0 + 1)/(0 - 1)` = – 1
We must have L.H.L. = R.H.L. = f(0)
⇒ k = – 1
APPEARS IN
संबंधित प्रश्न
A function f(x) is defined as,
If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if } & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\] is continuous at x = 4, find a, b.
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if } x = 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if } x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if } x < 1\end{cases}\]
If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is
If \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals
If \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (a, b) for which f (x) cannot be continuous at x = 1, is
If f is defined by f (x) = x2, find f'(2).
Define differentiability of a function at a point.
Is every differentiable function continuous?
Give an example of a function which is continuos but not differentiable at at a point.
If f (x) is differentiable at x = c, then write the value of
Write the points of non-differentiability of
Let f (x) = |x| and g (x) = |x3|, then
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`, x ≠ 0 is continuous at x = 0 , then find f(0).
Examine the continuity of the following function :
`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`
If y = ( sin x )x , Find `dy/dx`
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
Show that the function f defined by f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.
A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).
If f(x) = `{{:("m"x + 1",", "if" x ≤ pi/2),(sin x + "n"",", "If" x > pi/2):}`, is continuous at x = `pi/2`, then ______.
An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.
The value of k (k < 0) for which the function f defined as
f(x) = `{((1-cos"kx")/("x"sin"x")"," "x" ≠ 0),(1/2"," "x" = 0):}`
is continuous at x = 0 is: