हिंदी

F(x) = kk,if,if{1+kx-1-kxx, if-1≤x<02x+1x-1, if 0≤x≤1 at x = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0

योग

उत्तर

We have f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}`

L.H.L. = `lim_(x -> 0^-) (sqrt(1 + "k"x) - sqrt(1 - "k"x))/x`

= `lim_(x -> 0^-) ((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x) * ((sqrt(1 + "k"x) + sqrt(1 - "k"x))/(sqrt(1 + "k"x) + sqrt(1 - "k"x)))`

= `lim_(x -> 0^-) (1 + "k"x - 1 + "k"x)/(x[sqrt(1 + "k"x) + sqrt(1 + "k"x)])`

= `lim_("h" -> 0) (2"k")/(x[sqrt(1 + "k"(0 - "h")) + sqrt(1 - "k"(0 - "h")]`

= `lim_("h" -> 0) (2"k")/(sqrt(1 - "kh") + sqrt(1 + "kh")`

= `(2"k")/2`

= k

R.H.L. = `lim_(x -> 0^+) (2x + 1)/(x - 1)`

= `lim_("h" -> 0) (2(0 + "h") + 1)/((0 + "h") - 1)`

= `lim_("h" -> 0) (2"h" + 1)/("h" - 1)`

= – 1

Also f(0) = `(2 xx 0 + 1)/(0 - 1)` = – 1

We must have L.H.L. = R.H.L. = f(0)

⇒ k = – 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ १०८]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 13 | पृष्ठ १०८

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

A function f(x) is defined as,

\[f\left( x \right) = \begin{cases}\frac{x^2 - x - 6}{x - 3}; if & x \neq 3 \\ 5 ; if & x = 3\end{cases}\]  Show that f(x) is continuous that x = 3.

If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if }  & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\]  is continuous at x = 4, find ab.

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if }  x = 0\end{cases}\]


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if }  x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if }  x < 1\end{cases}\]


Prove that
\[f\left( x \right) = \begin{cases}\frac{\sin x}{x} , & x < 0 \\ x + 1 , & x \geq 0\end{cases}\] is everywhere continuous.

 


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


If  \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals


If  \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (ab) for which f (x) cannot be continuous at x = 1, is

 


If f is defined by f (x) = x2, find f'(2).


Define differentiability of a function at a point.

 

Is every differentiable function continuous?


Give an example of a function which is continuos but not differentiable at at a point.


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Write the points of non-differentiability of 

\[f \left( x \right) = \left| \log \left| x \right| \right| .\]

Let f (x) = |x| and g (x) = |x3|, then


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


 If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`,  x ≠ 0 is continuous at x = 0 , then find f(0).


Examine the continuity of the following function :

`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`


If y = ( sin x )x , Find `dy/dx`


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


An example of a function which is continuous everywhere but fails to be differentiable exactly at two points is ______.


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×