Advertisements
Advertisements
प्रश्न
Write the points of non-differentiability of
उत्तर
We have,
f (x) = |log |x||
`|x| = {(-x,-infty<x<-1),(-x, -1<x<0),(x, 0<x <1),(x, 1< x <infty):}`
`log |x| ={ (log(-x), - infty<x<-1),(log-x ,-1<x<0),(log(x), 0 <x<1),(log(x) , 1<x<infty):}`
`|log|x|| = {(log (-x), -infty<x<-1),(-log(-x),-1<x<0),(-log(x), 0<x<1),(log (x), 1 <x<infty):}`
\[\left( \text { LHD at x = } - 1 \right) = \lim_{x \to - 1^-} \frac{f\left( x \right) - f\left( - 1 \right)}{x + 1}\]
\[ = \lim_{x \to - 1^-} \frac{\log \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{\log \left( 1 + h \right)}{- 1 - h + 1}\]
\[ = - \lim_{h \to 0} \frac{\log \left( 1 + h \right)}{h} = - 1\]
\[\left( \text { RHD at x } = - 1 \right) = \lim_{x \to - 1^+} \frac{f\left( x \right) - f\left( - 1 \right)}{x + 1}\]
\[ = \lim_{x \to - 1^+} \frac{- \log \left( - x \right) - 0}{x + 1}\]
\[ = \lim_{h \to 0} \frac{- \log \left( 1 - h \right)}{- 1 + h + 1}\]
\[ = \lim_{h \to 0} \frac{- \log \left( 1 - h \right)}{h} = 1\]
Here, LHD ≠ RHD
So, function is not differentiable at x = − 1
At 0 function is not defined.
\[\left( \text { LHD at x } = 1 \right) = \lim_{x \to 1^-} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[ = \lim_{x \to 1^-} \frac{- \log \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{- \log \left( 1 - h \right)}{1 - h - 1}\]
\[ = - \lim_{h \to 0} \frac{\log \left( 1 - h \right)}{h} = - 1\]
\[\left( \text { RHD at x } = 1 \right) = \lim_{x \to 1^+} \frac{f\left( x \right) - f\left( 1 \right)}{x - 1}\]
\[ = \lim_{x \to 1^+} \frac{\log \left( x \right) - 0}{x - 1}\]
\[ = \lim_{h \to 0} \frac{\log \left( 1 + h \right)}{1 + h - 1}\]
\[ = \lim_{h \to 0} \frac{\log \left( 1 + h \right)}{h} = 1\]
Here, LHD ≠ RHD
So, function is not differentiable at x = 1
Hence, function is not differentiable at x = 0 and ± 1
APPEARS IN
संबंधित प्रश्न
Examine the following function for continuity:
f(x) = | x – 5|
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
Discuss the continuity of the following functions at the indicated point(s):
Find the value of 'a' for which the function f defined by
For what value of k is the function
\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if } x \neq 0 \\ 4 , & \text{ if } x = 0\end{cases}\]
Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\] is continuous at x = 1.
The value of f (0), so that the function
The value of f (0) so that the function
If \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals
If \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (a, b) for which f (x) cannot be continuous at x = 1, is
Show that f(x) = |x − 2| is continuous but not differentiable at x = 2.
Show that f(x) = x1/3 is not differentiable at x = 0.
Show that the function
(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0
Discuss the continuity and differentiability of f (x) = |log |x||.
Give an example of a function which is continuos but not differentiable at at a point.
The function f (x) = sin−1 (cos x) is
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0
= k for x = 0
is continuous at x = 0.
Examine the continuity of the followin function :
`{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1
f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
f(x) = |x| + |x − 1| at x = 1
f(x) = `{{:(3x - 8",", "if" x ≤ 5),(2"k"",", "if" x > 5):}` at x = 5
f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}` at x = 0
A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.