हिंदी

If the Function F is Continuous at X = 2, Then Find 'K' Where F(X) = X 2 + 5 X − 1 , for 1< X ≤ 2 = Kx + 1 , for X > 2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2

योग

उत्तर

Since f is continuous at x = 2

∴ `lim_(x → 2^-) f(x) = lim_(x → 2^+) f(x) = f(2)`

∴ `lim_(x → 2^-)[(x^2 + 5)/(x - 1)] = lim_(x → 2^+) (kx + 1) = (2^2 + 5)/(2 - 1)`

∴ `(4 + 5)/(2 - 1) = k(2) + 1 = 9`

∴ 9 = 2k + 1

⇒ ∴ k = 4

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?

APPEARS IN

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

Show that 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]


Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


Define continuity of a function at a point.

 

Find f (0), so that  \[f\left( x \right) = \frac{x}{1 - \sqrt{1 - x}}\]  becomes continuous at x = 0.

 


Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


The function 

\[f\left( x \right) = \frac{4 - x^2}{4x - x^3}\]

 


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


Let f (x) = | x | + | x − 1|, then


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


If f is defined by f (x) = x2, find f'(2).


Give an example of a function which is continuos but not differentiable at at a point.


The set of points where the function f (x) = x |x| is differentiable is 

 


Find k, if the function f is continuous at x = 0, where

`f(x)=[(e^x - 1)(sinx)]/x^2`,      for x ≠ 0

     = k                             ,        for x = 0


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


f(x) = `{{:(|x - 4|/(2(x - 4))",", "if"  x ≠ 4),(0",", "if"  x = 4):}` at x = 4


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


`lim_("x" -> 0) (2  "sin x - sin"  2 "x")/"x"^3` is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×