Advertisements
Advertisements
प्रश्न
Discuss the continuity of the function f at x = 0
If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0
= 1, for x = 0
उत्तर
Given f(0) = 1
Consider,
`lim_(x->0)` f (x) = `lim_(x->0) [(2^(3x) - 1)/tanx]`
= `lim_(x->0) [((2^(3x) - 1)/x)/((tanx)/x]], x ≠ 0`
= `lim_(x->0) [(2^(3x) - 1)/(3x).3]/(lim_(x->0)(tanx)/x) = 3 log 2`
= log 8
`(lim_(x->0) (a^x - 1)/x = log a and lim_(x->0) (tan x)/x = 1)`
`as x -> 0, 3x ->0`
Since `(lim_(x->0)` f(x) ≠ f(0)
f(x) is discontinuous at x = 0
APPEARS IN
संबंधित प्रश्न
If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`
is continuous at x = 0, then find the values of a and b.
Examine the following function for continuity:
`f(x) = (x^2 - 25)/(x + 5), x != -5`
A function f(x) is defined as,
Show that
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
Let f (x) = | x | + | x − 1|, then
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at \[x = \frac{\pi}{2}\], if
Discuss the continuity and differentiability of f (x) = e|x| .
Define differentiability of a function at a point.
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0
= k for x = 0
is continuous at x = 0.
Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4
= 10 for x = 4 at x = 4
Evaluate :`int Sinx/(sqrt(cos^2 x-2 cos x-3)) dx`
Find k, if the function f is continuous at x = 0, where
`f(x)=[(e^x - 1)(sinx)]/x^2`, for x ≠ 0
= k , for x = 0
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`
f(x) = `{{:(3x - 8",", "if" x ≤ 5),(2"k"",", "if" x > 5):}` at x = 5
f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",", "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",", "if" 0 ≤ x ≤ 1):}` at x = 0
The set of points where the function f given by f(x) = |2x − 1| sinx is differentiable is ______.