Advertisements
Advertisements
प्रश्न
If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`
is continuous at x = 0, then find the values of a and b.
उत्तर
Given that f is continuous at x=0
f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`
Since f x is continuous at x=0, `lim_(x->0^-)f(x)=lim_(x->0^+)f(x)=lim_(x-0)f(0)`
Thus R.H.L =`lim_(x->0^+)f(x)`
`lim_(x->0)f(0+h)`
=`lim_(h->0)(sqrt(1+bh)-1)/h`
=`lim_(h->0)(sqrt(1+bh)-1)/hxx(sqrt(1+bh)+1)/(sqrt(1+bh)+1)`
=`lim_(h->0)(1+bh-1)/(hsqrt(1+bh)+1`
=`lim_(h->0)(bh)/(hsqrt(1+bh)+1)`
=`lim_(h->0)b/(sqrt(1+bh)+1)`
=`b/2`
Given that f(0) = 2
`=>lim_(x->0^+)f(x)=f(0)`
`=>b/2=2`
⇒ b =4
Similarly,
L.H.L =`lim_(x->0^-)f(x)`
=`lim_(x->0)f(0 - h)`
=`lim_(h->0)(sin(a+1)(0-h)+2sin(0-h))/(0-h)`
=`lim_(h->0)(-sin(a+1)h-2sinh)/-h`
=`lim_(h->0)(-sin(a+1)h)/-h+lim_(h->0)(-2sinh)/-h`
=`lim_(h->0)(sin(a+1)h)/h ((a+1))/((a+1))+2lim_(h->0)sinh/h`
2 = a+1+2 `[therefore lim_(theta->0)sintheta/theta=1]`
∴ a = -1
APPEARS IN
संबंधित प्रश्न
Examine the following function for continuity:
`f(x) = (x^2 - 25)/(x + 5), x != -5`
A function f(x) is defined as
Show that f(x) is continuous at x = 3
Show that
\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]
Discuss the continuity of the function f(x) at the point x = 0, where \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k x^2 , & x \geq 1 \\ 4 , & x < 1\end{cases}\]at x = 1
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
Discuss the continuity of the function \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if } x < 2 \\ \frac{3x}{2} , & \text{ if } x \geq 2\end{cases}\]
Find all point of discontinuity of the function
If \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals
Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat:
Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.
If \[f\left( x \right) = \left| \log_e |x| \right|\]
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
If the function f (x) = `(15^x - 3^x - 5^x + 1)/(x tanx)`, x ≠ 0 is continuous at x = 0 , then find f(0).
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
= `1/12`, For x = 0
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)` so that f (x) becomes continuous at x = `pi/4`
Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1
f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if" x ≠ 2),(5",", "if" x = 2):}` at x = 2
f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
f(x) = |x| + |x − 1| at x = 1
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.