Advertisements
Advertisements
प्रश्न
Discuss the continuity of the function f(x) at the point x = 0, where \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]
उत्तर
Given: \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]
(LHL at x = 0) = \[\lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( 0 - h \right) = \lim_{h \to 0} f\left( - h \right)\]
\[\lim_{h \to 0} - \left( - h \right) = 0\]
(RHL at x = 0) =
\[\lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( 0 + h \right) = \lim_{h \to 0} f\left( h \right)\]
\[\lim_{h \to 0} \left( h \right) = 0\]
And,
\[f\left( 0 \right) = 1\]
\[\therefore \lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right) \neq f\left( 0 \right)\]
Hence ,
\[f\left( x \right)\] is discontinuous at
\[x = 0\]
APPEARS IN
संबंधित प्रश्न
Examine the continuity of the following function :
`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`
Determine the value of 'k' for which the following function is continuous at x = 3
`f(x) = {(((x + 3)^2 - 36)/(x - 3), x != 3), (k, x = 3):}`
Examine the following function for continuity:
`f (x)1/(x - 5), x != 5`
Examine the following function for continuity:
`f(x) = (x^2 - 25)/(x + 5), x != -5`
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
For what value of k is the function
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
Prove that \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0
Find the points of discontinuity, if any, of the following functions:
Find the values of a and b so that the function f(x) defined by \[f\left( x \right) = \begin{cases}x + a\sqrt{2}\sin x , & \text{ if }0 \leq x < \pi/4 \\ 2x \cot x + b , & \text{ if } \pi/4 \leq x < \pi/2 \\ a \cos 2x - b \sin x, & \text{ if } \pi/2 \leq x \leq \pi\end{cases}\]becomes continuous on [0, π].
Determine if \[f\left( x \right) = \begin{cases}x^2 \sin\frac{1}{x} , & x \neq 0 \\ 0 , & x = 0\end{cases}\] is a continuous function?
The points of discontinuity of the function
\[f\left( x \right) = \begin{cases}2\sqrt{x} , & 0 \leq x \leq 1 \\ 4 - 2x , & 1 < x < \frac{5}{2} \\ 2x - 7 , & \frac{5}{2} \leq x \leq 4\end{cases}\text{ is } \left( \text{ are }\right)\]
The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]
Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat:
Show that the function
\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.
If f is defined by f (x) = x2, find f'(2).
Discuss the continuity and differentiability of f (x) = |log |x||.
Give an example of a function which is continuos but not differentiable at at a point.
If f (x) is differentiable at x = c, then write the value of
Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]
The function f (x) = |cos x| is
Find the value of k for which the function f (x ) = \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.
Show that the function f defined by f(x) = `{{:(x sin 1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.
The function given by f (x) = tanx is discontinuous on the set ______.
The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.
The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.
f(x) = `{{:(3x + 5",", "if" x ≥ 2),(x^2",", "if" x < 2):}` at x = 2
f(x) = `{{:(|x - 4|/(2(x - 4))",", "if" x ≠ 4),(0",", "if" x = 4):}` at x = 4
f(x) = |x| + |x − 1| at x = 1
Examine the differentiability of f, where f is defined by
f(x) = `{{:(1 + x",", "if" x ≤ 2),(5 - x",", "if" x > 2):}` at x = 2
If f is continuous on its domain D, then |f| is also continuous on D.
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`