हिंदी

Show that the Function F Defined as Follows, is Continuous at X = 2, but Not Differentiable Thereat: F ( X ) = ⎧ ⎨ ⎩ 3 X − 2 , 0 < X ≤ 1 2 X 2 − X , 1 < X ≤ 2 5 X − 4 , X > 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]
संक्षेप में उत्तर

उत्तर

Given:  

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

First , we will show that f(x) is continuos at 

\[x = 2\]

We have,
(LHL at x=2)

\[{= \lim}_{x \to 2^-} f(x)\]
\[ = \lim_{h \to 0} f(2 - h) \]
\[ = \lim_{h \to 0} 2(2 - h )^2 - (2 - h)\]
\[ = \lim_{h \to 0} (8 + 2 h^2 - 8h - 2 + h)\]
\[ = 6\]

(RHL at x = 2) 

\[= \lim_{x \to 2^+} f(x) \]
\[ = \lim_{h \to 0} f(2 + h) \]
\[ = \lim_{h \to 0} 5(2 + h) - 4 \]
\[ = \lim_{h \to 0} (10 + 5h - 4) \]
\[ = 6\

and 

\[f(2) = 2 \times 4 - 2 = 6 .\]

Thus,  

\[\lim_{x \to 2^-} f(x)\]
\[\lim_{x \to 2^+} f(x)\]
\[f(2)\]

Hence the function is continuous at x=2.

Now, we will check whether the given function is differentiable at x = 2.

We have,
(LHD at x = 2)

\[\lim_{x \to 2^-} \frac{f(x) - f(2)}{x - 2} \]
\[ = \lim_{h \to 0} \frac{f(2 - h) - f(2)}{- h} \]
\[ = \lim_{h \to 0} \frac{2 h^2 - 7h + 6 - 6}{- h} \]
\[ = \lim_{h \to 0} - 2h + 7 \]
\[ = 7\]

(RHD at x = 2)

\[\lim_{x \to 2^+} \frac{f(x) - f(2)}{x - 2} \]
\[ = \lim_{h \to 0} \frac{f(2 + h) - f(2)}{h} \]
\[ = \lim_{h \to 0} \frac{10 + 5h - 4 - 6}{h}\]
\[ = 5\]

Thus, LHD at x=2 ≠ RHD at x = 2.
Hence, function is not differentiable at x = 2.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 10: Differentiability - Exercise 10.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 10 Differentiability
Exercise 10.1 | Q 4 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`

is continuous at x = 0, then find the values of a and b.


Examine the following function for continuity:

f(x) = | x – 5|


If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Show that 

\[f\left( x \right) = \begin{cases}1 + x^2 , if & 0 \leq x \leq 1 \\ 2 - x , if & x > 1\end{cases}\]


Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\] 


Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


For what value of k is the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  continuous at x = 0?

 


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  

\[f\left( x \right) = \begin{cases}k( x^2 - 2x), \text{ if }  & x < 0 \\ \cos x, \text{ if }  & x \geq 0\end{cases}\] at x = 0

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  f(x)={kx2,x14,x<1at x = 1

 


Find the points of discontinuity, if any, of the following functions:  f(x)={x4+x3+2x2tan1x, if x010, if x=0


Find the values of a and b so that the function f(x) defined by f(x)={x+a2sinx, if 0x<π/42xcotx+b, if π/4x<π/2acos2xbsinx, if π/2xπbecomes continuous on [0, π].


Prove that
f(x)={sinxx,x<0x+1,x0 is everywhere continuous.

 


Find all point of discontinuity of the function 

f(t)=1t2+t2, where t=1x1

If f(x)=|log10x| then at x = 1


If  f(x)={sin(a+1)x+sinxx,x<0c,x=0x+bx2xbxx,x>0is continuous at x = 0, then 


The value of f (0) so that the function 

f(x)=2(2567x)1/8(5x+32)1/52,  0 is continuous everywhere, is given by


The value of b for which the function 

f(x)={5x4,0<x14x2+3bx,1<x<2 is continuous at every point of its domain, is 

If  f(x)={sin(cosx)cosx(π2x)2,xπ2k,x=π2is continuous at x = π/2, then k is equal to


Show that f(x)=`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


If f(x)={ax2b, if |x|<11|x|, if |x|1  is differentiable at x = 1, find a, b.


Is every continuous function differentiable?


If f (x) is differentiable at x = c, then write the value of 

limxcf(x)

Let f(x)={1|x|for|x|1ax2+bfor|x|<1 If f (x) is continuous and differentiable at any point, then

 

 

 


Find the value of k for which the function f (x ) =  (x2+3x10x2,x2k,x2) is continuous at x = 2 .

 
 

Discuss the continuity of the function f at x = 0

If f(x) = 23x-1tanx, for x ≠ 0

         = 1,   for x = 0


Find the points of discontinuity , if any for the function : f(x) = x2-9sinx-9


If y = ( sin x )x , Find dydx


Discuss the continuity of function f at x = 0.
Where f(X) = [4+x-23x], For x ≠ 0
                  = 112,                      For x = 0


Show that the function f defined by f(x) = {xsin 1x,x00,x=0 is continuous at x = 0.


Examine the differentiability of the function f defined by
f(x) = {2x+3, if -3x<-2x+1, if -2x<0x+2, if 0x1


f(x) = {2x2-3x-2x-2,if x25,if x=2 at x = 2


f(x) = {|x|cos 1x,if x00,if x=0 at x = 0


f(x) = {e1x1+e1x,if x00,if x=0 at x = 0 


f(x) = {1-coskxxsinx,  if x012, if x=0 at x = 0


Examine the differentiability of f, where f is defined by
f(x) = {1+x, if x25-x, if x>2 at x = 2


If f is continuous on its domain D, then |f| is also continuous on D.


Given functions f(x)=x2-4x-2and g(x)=x+2,xR. Then which of the following is correct?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.