हिंदी

If F ( X ) = ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ Sin ( a + 1 ) X + Sin X X , X < 0 C , X = 0 √ X + B X 2 − √ X B X √ X , X > 0 is Continuous at X = 0, Then - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \begin{cases}\frac{\sin (a + 1) x + \sin x}{x} , & x < 0 \\ c , & x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{bx\sqrt{x}} , & x > 0\end{cases}\]is continuous at x = 0, then 

विकल्प

  • a =  \[- \frac{3}{2}\] , b = 0, c = \[\frac{1}{2}\]

  •  a = \[- \frac{3}{2}\] , b = 1, c = \[- \frac{1}{2}\] 

  • a =\[- \frac{3}{2}\], b ∈ R − {0}, c = \[\frac{1}{2}\] 

  • none of these

MCQ

उत्तर

a =\[- \frac{3}{2}\], b ∈ R − {0}, c = \[\frac{1}{2}\] 

The given function can be rewritten as
\[f\left( x \right) = \begin{cases}\frac{\sin \left( a + 1 \right) x + x \sin x}{x}, \text{ for}  x < 0 \\ c ,\text{  for }  x = 0 \\ \frac{\sqrt{x + b x^2} - \sqrt{x}}{b x^\frac{3}{2}} , \text{ for } x > 0\end{cases}\]
\[\Rightarrow f\left( x \right) = \begin{cases}\frac{\sin \left( a + 1 \right)x + \sin x}{x}, \text{ for }  x < 0 \\ c , \text{ for } x = 0 \\ \frac{\sqrt{1 + bx} - 1}{bx} , \text{ for }  x > 0\end{cases}\]

We have
(LHL at x = 0) =  \[\lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( 0 - h \right) = \lim_{h \to 0} f\left( - h \right)\]

\[= \lim_{h \to 0} \left[ \frac{- \sin \left( a + 1 \right)h - \sin \left( - h \right)}{h} \right] = \lim_{h \to 0} \left[ \frac{- \sin \left( a + 1 \right)h}{h} - \frac{\sin h}{h} \right]\]
\[= - \left( a + 1 \right) \lim_{h \to 0} \left[ \frac{\sin \left( a + 1 \right)h}{\left( a + 1 \right)h} \right] - \lim_{h \to 0} \frac{\sin h}{h} = - a - 1\]

(RHL at x = 0) =  \[\lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( 0 + h \right) = \lim_{h \to 0} f\left( h \right)\]

\[\lim_{h \to 0} \left( \frac{\sqrt{1 + bh} - 1}{bh} \right) = \lim_{h \to 0} \left( \frac{bh}{bh\left( \sqrt{1 + bh} + 1 \right)} \right) = \lim_{h \to 0} \left( \frac{1}{\left( \sqrt{1 + bh} + 1 \right)} \right) = \frac{1}{2}\]

Also,  \[f\left( 0 \right) = c\] 

If  \[f\left( x \right)\]  is continuous at x = 0, then

\[\lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right) = f\left( 0 \right)\] 
\[\Rightarrow - a - 1 = \frac{1}{2} = c\]
\[\Rightarrow - a - 1 = \frac{1}{2} \text{ and } c = \frac{1}{2}\]
\[\Rightarrow a = \frac{- 3}{2}\] \[, c = \frac{1}{2}\]

Now,

\[\frac{\sqrt{1 + bx} - 1}{bx}\]  exists only if  \[bx \neq 0 \Rightarrow b \neq 0\]
Thus,  \[b \in R - \left\{ 0 \right\}\]. 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 14 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`

is continuous at x = 0, then find the values of a and b.


Examine the following function for continuity:

f (x) = x – 5


Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 


Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


If  \[f\left( x \right) = \begin{cases}\frac{1 - \cos kx}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\text{is continuous at x} = 0, \text{ find } k .\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\left| x - 3 \right|, & \text{ if }  x \geq 1 \\ \frac{x^2}{4} - \frac{3x}{2} + \frac{13}{4}, & \text{ if }  x < 1\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


Discuss the continuity of the function  \[f\left( x \right) = \begin{cases}2x - 1 , & \text { if }  x < 2 \\ \frac{3x}{2} , & \text{ if  } x \geq 2\end{cases}\]


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


The function  \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as

 


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

Show that the function 

\[f\left( x \right) = \begin{cases}\left| 2x - 3 \right| \left[ x \right], & x \geq 1 \\ \sin \left( \frac{\pi x}{2} \right), & x < 1\end{cases}\] is continuous but not differentiable at x = 1.


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Write the points of non-differentiability of 

\[f \left( x \right) = \left| \log \left| x \right| \right| .\]

If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]


Find the value of k for which the function f (x ) =  \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .

 
 

If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


The total cost C for producing x units is Rs (x2 + 60x + 50) and the price is Rs (180 - x) per unit. For how many units the profit is maximum.


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b


Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`


Show that the function f defined by f(x) = `{{:(x sin  1/x",", x ≠ 0),(0",", x = 0):}` is continuous at x = 0.


The function f(x) = |x| + |x – 1| is ______.


The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×