हिंदी

Let F ( X ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ X 4 − 5 X 2 + 4 | ( X − 1 ) ( X − 2 ) | , X ≠ 1 , 2 6 , X = 1 12 , X = 2 . Then, F (X) is Continuous on the Set - Mathematics

Advertisements
Advertisements

प्रश्न

Let  \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set

 

विकल्प

  •  R

  •  R −{1} 

  •  R − {2}

  • − {1, 2}

MCQ

उत्तर

R − {1, 2} 

Given : 

\[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right)\left( x - 2 \right) \right|}, x \neq 1, 2 \\ 6, x = 1 \\ 12, x = 2\end{cases}\]

\[\text{ Now,}  \]
\[ x^4 - 5 x^2 + 4 = x^4 - x^2 - 4 x^2 + 4 = x^2 \left( x^2 - 1 \right) - 4\left( x^2 - 1 \right) = \left( x^2 - 1 \right)\left( x^2 - 4 \right) = \left( x - 1 \right)\left( x + 1 \right)\left( x - 2 \right)\left( x + 2 \right)\]
\[ \Rightarrow f\left( x \right) = \begin{cases}\frac{\left( x - 1 \right)\left( x + 1 \right)\left( x - 2 \right)\left( x + 2 \right)}{\left| \left( x - 2 \right)\left( x - 1 \right) \right|}, x \neq 1, 2 \\ 6, x = 1 \\ 12, x = 2\end{cases}\]

\[\Rightarrow f\left( x \right) = \begin{cases}\left( x + 1 \right)\left( x + 2 \right), x < 1 \\ - \left( x + 1 \right)\left( x + 2 \right), 1 < x < 2 \\ \left( x + 1 \right)\left( x + 2 \right), x > 2 \\ 6, x = 1 \\ 12, x = 2\end{cases}\]
So,  
\[\lim_{x \to 1^-} f\left( x \right) = \lim_{h \to 0} f\left( 1 - h \right) = \lim_{h \to 0} \left( 1 - h + 1 \right)\left( 1 - h + 2 \right) = 2 \times 3 = 6\]
\[\lim_{x \to 1^+} f\left( x \right) = \lim_{h \to 0} f\left( 1 + h \right) = - \lim_{h \to 0} \left( 1 + h + 1 \right)\left( 1 + h + 2 \right) = - 2 \times 3 = - 6\]
Also,

\[\lim_{x \to 2^-} f\left( x \right) = \lim_{h \to 0} f\left( 2 - h \right) = - \lim_{h \to 0} \left( 2 - h + 1 \right)\left( 2 - h + 2 \right) = - 12\]
\[\lim_{x \to 2^+} f\left( x \right) = \lim_{h \to 0} f\left( 2 + h \right) = \lim_{h \to 0} \left( 2 + h + 1 \right)\left( 2 + h + 2 \right) = 12\] 
Thus, 
\[\lim_{x \to 1^+} f\left( x \right) \neq \lim_{x \to 1^-} f\left( x \right) \text{ and } \lim_{x \to 2^+} f\left( x \right) \neq \lim_{x \to 2^-} f\left( x \right)\]
Therefore, the only points of discontinuities of the function \[f\left( x \right)\]are \[x = 1 \text{ and }x = 2\]
Hence, the given function is continuous on the set  R − {1, 2}.
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 13 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्न

If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`

is continuous at x = 0, then find the values of a and b.


Examine the following function for continuity:

f(x) = | x – 5|


Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.

 

 


Show that 

\[f\left( x \right) = \begin{cases}\frac{\left| x - a \right|}{x - a}, when & x \neq a \\ 1 , when & x = a\end{cases}\] is discontinuous at x = a.

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - 1 \right|}{x - 1}, for & x \neq 1 \\ 2 , for & x = 1\end{cases}at x = 1\]

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{2\left| x \right| + x^2}{x}, & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]

Discuss the continuity of the f(x) at the indicated points: 

(i) f(x) = | x | + | x − 1 | at x = 0, 1.


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & \text{ if }   x \neq 0 \\ 4 , & \text{ if }  x = 0\end{cases}\]

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\frac{e^x - 1}{\log_e (1 + 2x)}, & \text{ if }x \neq 0 \\ 7 , & \text{ if } x = 0\end{cases}\]

Find all the points of discontinuity of f defined by f (x) = | x |− | x + 1 |.


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

If f (x) = | x − a | ϕ (x), where ϕ (x) is continuous function, then


Let f (x) = | x | + | x − 1|, then


If  \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is


Define differentiability of a function at a point.

 

Is every continuous function differentiable?


Give an example of a function which is continuos but not differentiable at at a point.


Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


The function f (x) = sin−1 (cos x) is


If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


If \[f\left( x \right) = \left| \log_e x \right|, \text { then}\]


Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is 


Discuss the continuity of f at x = 1 ,
Where f(x) = `(3 - sqrt(2x + 7))/(x - 1)` for x = ≠ 1
= `(-1)/3`   for x = 1


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


Examine the continuity of the followin function : 

  `{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`   


Discuss the continuity of the function f(x) = sin x . cos x.


If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)`  so that f (x) becomes continuous at x = `pi/4`


A continuous function can have some points where limit does not exist.


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin  1/x",",  "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


The composition of two continuous function is a continuous function.


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×