English

Let F ( X ) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ X 4 − 5 X 2 + 4 | ( X − 1 ) ( X − 2 ) | , X ≠ 1 , 2 6 , X = 1 12 , X = 2 . Then, F (X) is Continuous on the Set - Mathematics

Advertisements
Advertisements

Question

Let  \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set

 

Options

  •  R

  •  R −{1} 

  •  R − {2}

  • − {1, 2}

MCQ

Solution

R − {1, 2} 

Given : 

\[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right)\left( x - 2 \right) \right|}, x \neq 1, 2 \\ 6, x = 1 \\ 12, x = 2\end{cases}\]

\[\text{ Now,}  \]
\[ x^4 - 5 x^2 + 4 = x^4 - x^2 - 4 x^2 + 4 = x^2 \left( x^2 - 1 \right) - 4\left( x^2 - 1 \right) = \left( x^2 - 1 \right)\left( x^2 - 4 \right) = \left( x - 1 \right)\left( x + 1 \right)\left( x - 2 \right)\left( x + 2 \right)\]
\[ \Rightarrow f\left( x \right) = \begin{cases}\frac{\left( x - 1 \right)\left( x + 1 \right)\left( x - 2 \right)\left( x + 2 \right)}{\left| \left( x - 2 \right)\left( x - 1 \right) \right|}, x \neq 1, 2 \\ 6, x = 1 \\ 12, x = 2\end{cases}\]

\[\Rightarrow f\left( x \right) = \begin{cases}\left( x + 1 \right)\left( x + 2 \right), x < 1 \\ - \left( x + 1 \right)\left( x + 2 \right), 1 < x < 2 \\ \left( x + 1 \right)\left( x + 2 \right), x > 2 \\ 6, x = 1 \\ 12, x = 2\end{cases}\]
So,  
\[\lim_{x \to 1^-} f\left( x \right) = \lim_{h \to 0} f\left( 1 - h \right) = \lim_{h \to 0} \left( 1 - h + 1 \right)\left( 1 - h + 2 \right) = 2 \times 3 = 6\]
\[\lim_{x \to 1^+} f\left( x \right) = \lim_{h \to 0} f\left( 1 + h \right) = - \lim_{h \to 0} \left( 1 + h + 1 \right)\left( 1 + h + 2 \right) = - 2 \times 3 = - 6\]
Also,

\[\lim_{x \to 2^-} f\left( x \right) = \lim_{h \to 0} f\left( 2 - h \right) = - \lim_{h \to 0} \left( 2 - h + 1 \right)\left( 2 - h + 2 \right) = - 12\]
\[\lim_{x \to 2^+} f\left( x \right) = \lim_{h \to 0} f\left( 2 + h \right) = \lim_{h \to 0} \left( 2 + h + 1 \right)\left( 2 + h + 2 \right) = 12\] 
Thus, 
\[\lim_{x \to 1^+} f\left( x \right) \neq \lim_{x \to 1^-} f\left( x \right) \text{ and } \lim_{x \to 2^+} f\left( x \right) \neq \lim_{x \to 2^-} f\left( x \right)\]
Therefore, the only points of discontinuities of the function \[f\left( x \right)\]are \[x = 1 \text{ and }x = 2\]
Hence, the given function is continuous on the set  R − {1, 2}.
shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 13 | Page 44

RELATED QUESTIONS

Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

Write the value of b for which \[f\left( x \right) = \begin{cases}5x - 4 & 0 < x \leq 1 \\ 4 x^2 + 3bx & 1 < x < 2\end{cases}\]  is continuous at x = 1.

 


If  \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals

 


Let f (x) = | x | + | x − 1|, then


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

The function  \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as

 


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

Show that the function 

\[f\left( x \right) = \begin{cases}x^m \sin\left( \frac{1}{x} \right) & , x \neq 0 \\ 0 & , x = 0\end{cases}\]

(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0


If f is defined by f (x) = x2, find f'(2).


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Define differentiability of a function at a point.

 

Is every differentiable function continuous?


The function f (x) = e|x| is


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is


Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0

                     = k                    for x = 0

is continuous at x = 0. 


Find the value of k for which the function f (x ) =  \[\binom{\frac{x^2 + 3x - 10}{x - 2}, x \neq 2}{ k , x^2 }\] is continuous at x = 2 .

 
 

Discuss the continuity of f at x = 1
Where f(X) = `[ 3 - sqrt ( 2x + 7 ) / ( x - 1 )]`           For x ≠ 1
                    = `-1/3`                                                 For x = 1


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


If y = ( sin x )x , Find `dy/dx`


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`


If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


If f(x) = `{{:("m"x + 1",",  "if"  x ≤ pi/2),(sin x + "n"",",  "If"  x > pi/2):}`, is continuous at x = `pi/2`, then ______.


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×