English

If F ( X ) = { 36 X − 9 X − 4 X + 1 √ 2 − √ 1 + Cos X , X ≠ 0 K , X = 0 is Continuous at X = 0, Then K Equals (A) 16 √ 2 Log 2 Log 3 (B) 16 √ 2 (C) 16 √ 2 Ln 2 Ln 3 (D) None of These - Mathematics

Advertisements
Advertisements

Question

If  \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals

 

Options

  • \[16\sqrt{2}\] log 2 log 3

  • \[16\sqrt{2}\]

  • \[16\sqrt{2}\]  ln 2 ln 3

  • none of these

MCQ

Solution

\[16\sqrt{2} \ln2 \ln3\]

Given: 

\[f\left( x \right) = \binom{\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \ cosx}}, x \neq 0}{k, x = 0}\]

If  \[f\left( x \right)\]  is continuous at  \[x = 0\] , then 

\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]

\[\Rightarrow \lim_{x \to 0} \left( \frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{9^x 4^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{9^x \left( 4^x - 1 \right) - 1\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{2}\cos \left( \frac{x}{2} \right)} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2}\left[ 1 - \cos \left( \frac{x}{2} \right) \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2}\left[ 2 \sin^2 \left( \frac{x}{4} \right) \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{8\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{16\sqrt{2} x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{x^2} \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{8\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{\left( \frac{x^2}{16} \right)} \right]} \right) = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{\left( \frac{x}{4} \right)^2} \right]} \right) = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}}\frac{\lim_{x \to 0} \left( \frac{9^x - 1}{x} \right) \lim_{x \to 0} \left( \frac{4^x - 1}{x} \right)}{\lim_{x \to 0} \left[ \frac{\sin \left( \frac{x}{4} \right)}{\left( \frac{x}{4} \right)} \right]^2} = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \times \frac{\ln 9 \times \ln 4}{1} = k \left[ \because \lim_{x \to 0} \left( \frac{a^x - 1}{x} \right) = a \right]\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \times \frac{2 \ln 3 \times \left( 2 \ln 2 \right)}{1} = k \]
\[ \]
\[ \Rightarrow \frac{32}{\sqrt{2}} \times \frac{\ln 3 \ln 2}{1} = k\]
\[ \Rightarrow \frac{32\sqrt{2}}{2} \times \frac{\ln 3 \ln 2}{1} = k\]
\[ \Rightarrow k = 16\sqrt{2} \ln 2 \ln 3\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 42]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 4 | Page 42

RELATED QUESTIONS

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


 If 'f' is continuous at x = 0, then find f(0).

`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`


Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.

 

 


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


For what value of k is the following function continuous at x = 2? 

\[f\left( x \right) = \begin{cases}2x + 1 ; & \text{ if } x < 2 \\ k ; & x = 2 \\ 3x - 1 ; & x > 2\end{cases}\]

If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}5 , & \text{ if }  & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if }  & x \geq 10\end{cases}\]


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

The function 

\[f\left( x \right) = \frac{4 - x^2}{4x - x^3}\]

 


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


If  \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is


The function  \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as

 


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.


Write the points where f (x) = |loge x| is not differentiable.


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


If f(x) = `(e^(2x) - 1)/(ax)` .                for x < 0 , a ≠ 0
         = 1.                             for x = 0
         = `(log(1 + 7x))/(bx)`.        for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b


The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`,  0 < x < 2
        = 0,       Otherwise
Find P( x ≤ 1)


Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.

f (x) = `(sin^2 5x)/x^2` for x ≠ 0 
= 5   for x = 0, at x = 0


Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1

= `-1/3`   for x = 1, at x = 1


If the function f is continuous at x = 2, then find 'k' where

f(x) = `(x^2 + 5)/(x - 1),` for  1< x ≤ 2 
      = kx + 1 , for x > 2


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


Discuss the continuity of the function f(x) = sin x . cos x.


If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if"  x ≠ 2),(5",", "if"  x = 2):}` at x = 2


f(x) = |x| + |x − 1| at x = 1


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin  1/x",",  "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)`  is equal to ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×