Advertisements
Advertisements
Question
If \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals
Options
\[16\sqrt{2}\] log 2 log 3
\[16\sqrt{2}\]
\[16\sqrt{2}\] ln 2 ln 3
none of these
Solution
Given:
If \[f\left( x \right)\] is continuous at \[x = 0\] , then
\[\Rightarrow \lim_{x \to 0} \left( \frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{9^x 4^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{9^x \left( 4^x - 1 \right) - 1\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{2}\cos \left( \frac{x}{2} \right)} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2}\left[ 1 - \cos \left( \frac{x}{2} \right) \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2}\left[ 2 \sin^2 \left( \frac{x}{4} \right) \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{8\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{16\sqrt{2} x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{x^2} \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{8\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{\left( \frac{x^2}{16} \right)} \right]} \right) = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{\left( \frac{x}{4} \right)^2} \right]} \right) = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}}\frac{\lim_{x \to 0} \left( \frac{9^x - 1}{x} \right) \lim_{x \to 0} \left( \frac{4^x - 1}{x} \right)}{\lim_{x \to 0} \left[ \frac{\sin \left( \frac{x}{4} \right)}{\left( \frac{x}{4} \right)} \right]^2} = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \times \frac{\ln 9 \times \ln 4}{1} = k \left[ \because \lim_{x \to 0} \left( \frac{a^x - 1}{x} \right) = a \right]\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \times \frac{2 \ln 3 \times \left( 2 \ln 2 \right)}{1} = k \]
\[ \]
\[ \Rightarrow \frac{32}{\sqrt{2}} \times \frac{\ln 3 \ln 2}{1} = k\]
\[ \Rightarrow \frac{32\sqrt{2}}{2} \times \frac{\ln 3 \ln 2}{1} = k\]
\[ \Rightarrow k = 16\sqrt{2} \ln 2 \ln 3\]
APPEARS IN
RELATED QUESTIONS
Examine the continuity of the following function :
`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`
If 'f' is continuous at x = 0, then find f(0).
`f(x)=(15^x-3^x-5^x+1)/(xtanx) , x!=0`
Examine the following function for continuity:
`f(x) = (x^2 - 25)/(x + 5), x != -5`
If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.
Let \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x^2}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\] Show that f(x) is discontinuous at x = 0.
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]
For what value of k is the following function continuous at x = 2?
If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if } 0 \leq x \leq 1\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}5 , & \text{ if } & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if } & x \geq 10\end{cases}\]
Find all point of discontinuity of the function
The function
If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\] , then
If \[f\left( x \right) = \frac{1}{1 - x}\] , then the set of points discontinuity of the function f (f(f(x))) is
The function \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Write an example of a function which is everywhere continuous but fails to differentiable exactly at five points.
Write the points where f (x) = |loge x| is not differentiable.
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?
Discuss the continuity of the function f at x = 0
If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0
= 1, for x = 0
If the function f is continuous at = 2, then find f(2) where f(x) = `(x^5 - 32)/(x - 2)`, for ≠ 2.
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
If f(x) = `(e^(2x) - 1)/(ax)` . for x < 0 , a ≠ 0
= 1. for x = 0
= `(log(1 + 7x))/(bx)`. for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b
The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`, 0 < x < 2
= 0, Otherwise
Find P( x ≤ 1)
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
Discuss the continuity of the function f(x) = sin x . cos x.
If f(x) = `{{:((x^3 + x^2 - 16x + 20)/(x - 2)^2",", x ≠ 2),("k"",", x = 2):}` is continuous at x = 2, find the value of k.
The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.
For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).
f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if" x ≠ 2),(5",", "if" x = 2):}` at x = 2
f(x) = |x| + |x − 1| at x = 1
f(x) = `{{:((1 - cos "k"x)/(xsinx)",", "if" x ≠ 0),(1/2",", "if" x = 0):}` at x = 0
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.