मराठी

If F ( X ) = { 36 X − 9 X − 4 X + 1 √ 2 − √ 1 + Cos X , X ≠ 0 K , X = 0 is Continuous at X = 0, Then K Equals (A) 16 √ 2 Log 2 Log 3 (B) 16 √ 2 (C) 16 √ 2 Ln 2 Ln 3 (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

If  \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals

 

पर्याय

  • \[16\sqrt{2}\] log 2 log 3

  • \[16\sqrt{2}\]

  • \[16\sqrt{2}\]  ln 2 ln 3

  • none of these

MCQ

उत्तर

\[16\sqrt{2} \ln2 \ln3\]

Given: 

\[f\left( x \right) = \binom{\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \ cosx}}, x \neq 0}{k, x = 0}\]

If  \[f\left( x \right)\]  is continuous at  \[x = 0\] , then 

\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]

\[\Rightarrow \lim_{x \to 0} \left( \frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{9^x 4^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{9^x \left( 4^x - 1 \right) - 1\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{2}\cos \left( \frac{x}{2} \right)} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2}\left[ 1 - \cos \left( \frac{x}{2} \right) \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2}\left[ 2 \sin^2 \left( \frac{x}{4} \right) \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{8\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{16\sqrt{2} x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{x^2} \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{8\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{\left( \frac{x^2}{16} \right)} \right]} \right) = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{\left( \frac{x}{4} \right)^2} \right]} \right) = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}}\frac{\lim_{x \to 0} \left( \frac{9^x - 1}{x} \right) \lim_{x \to 0} \left( \frac{4^x - 1}{x} \right)}{\lim_{x \to 0} \left[ \frac{\sin \left( \frac{x}{4} \right)}{\left( \frac{x}{4} \right)} \right]^2} = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \times \frac{\ln 9 \times \ln 4}{1} = k \left[ \because \lim_{x \to 0} \left( \frac{a^x - 1}{x} \right) = a \right]\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \times \frac{2 \ln 3 \times \left( 2 \ln 2 \right)}{1} = k \]
\[ \]
\[ \Rightarrow \frac{32}{\sqrt{2}} \times \frac{\ln 3 \ln 2}{1} = k\]
\[ \Rightarrow \frac{32\sqrt{2}}{2} \times \frac{\ln 3 \ln 2}{1} = k\]
\[ \Rightarrow k = 16\sqrt{2} \ln 2 \ln 3\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 4 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Determine the value of 'k' for which the following function is continuous at x = 3

`f(x) = {(((x + 3)^2 - 36)/(x - 3),  x != 3), (k,  x = 3):}`


Examine the following function for continuity:

f (x) = x – 5


Examine the following function for continuity:

`f(x) = (x^2 - 25)/(x + 5), x != -5`


Examine the following function for continuity:

f(x) = | x – 5|


Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.


Show that 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]


For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for"   x < 0),(x, "for"  x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for"  x > 0):}` is continuous at x = 0.


If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if }  & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\]  is continuous at x = 4, find ab.

 


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

Prove that
\[f\left( x \right) = \begin{cases}\frac{\sin x}{x} , & x < 0 \\ x + 1 , & x \geq 0\end{cases}\] is everywhere continuous.

 


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


If  \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals


The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]    continuous at x = 0, is

 


The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

Discuss the continuity and differentiability of f (x) = |log |x||.


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


The function f (x) = e|x| is


If the function f is continuous at x = 0

Where f(x) = 2`sqrt(x^3 + 1)` + a,  for x < 0,
= `x^3 + a + b,  for x > 0
and f (1) = 2, then find a and b.


Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`


Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
                  = `1/12`,                      For x = 0


If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b


Discuss the continuity of the function f(x) = sin x . cos x.


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.


f(x) = `{{:(|x - "a"| sin  1/(x - "a")",",  "if"  x ≠ 0),(0",",  "if"  x = "a"):}` at x = a


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


The composition of two continuous function is a continuous function.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×