Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = \begin{cases}\frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, then k equals
पर्याय
\[16\sqrt{2}\] log 2 log 3
\[16\sqrt{2}\]
\[16\sqrt{2}\] ln 2 ln 3
none of these
उत्तर
Given:
If \[f\left( x \right)\] is continuous at \[x = 0\] , then
\[\Rightarrow \lim_{x \to 0} \left( \frac{{36}^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{9^x 4^x - 9^x - 4^x + 1}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{9^x \left( 4^x - 1 \right) - 1\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{1 + \cos x}} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} - \sqrt{2}\cos \left( \frac{x}{2} \right)} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2}\left[ 1 - \cos \left( \frac{x}{2} \right) \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2}\left[ 2 \sin^2 \left( \frac{x}{4} \right) \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{8\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{16\sqrt{2} x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{x^2} \right]} \right) = k\]
\[ \Rightarrow \lim_{x \to 0} \left( \frac{8\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{\sqrt{2} x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{\left( \frac{x^2}{16} \right)} \right]} \right) = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \lim_{x \to 0} \left( \frac{\left( 9^x - 1 \right)\left( 4^x - 1 \right)}{x^2 \left[ \frac{\sin^2 \left( \frac{x}{4} \right)}{\left( \frac{x}{4} \right)^2} \right]} \right) = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}}\frac{\lim_{x \to 0} \left( \frac{9^x - 1}{x} \right) \lim_{x \to 0} \left( \frac{4^x - 1}{x} \right)}{\lim_{x \to 0} \left[ \frac{\sin \left( \frac{x}{4} \right)}{\left( \frac{x}{4} \right)} \right]^2} = k\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \times \frac{\ln 9 \times \ln 4}{1} = k \left[ \because \lim_{x \to 0} \left( \frac{a^x - 1}{x} \right) = a \right]\]
\[ \Rightarrow \frac{8}{\sqrt{2}} \times \frac{2 \ln 3 \times \left( 2 \ln 2 \right)}{1} = k \]
\[ \]
\[ \Rightarrow \frac{32}{\sqrt{2}} \times \frac{\ln 3 \ln 2}{1} = k\]
\[ \Rightarrow \frac{32\sqrt{2}}{2} \times \frac{\ln 3 \ln 2}{1} = k\]
\[ \Rightarrow k = 16\sqrt{2} \ln 2 \ln 3\]
APPEARS IN
संबंधित प्रश्न
Determine the value of 'k' for which the following function is continuous at x = 3
`f(x) = {(((x + 3)^2 - 36)/(x - 3), x != 3), (k, x = 3):}`
Examine the following function for continuity:
f (x) = x – 5
Examine the following function for continuity:
`f(x) = (x^2 - 25)/(x + 5), x != -5`
Examine the following function for continuity:
f(x) = | x – 5|
Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`
If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.
Show that
\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]
For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]
Determine the values of a, b, c for which the function f(x) = `{((sin(a + 1)x + sin x)/x, "for" x < 0),(x, "for" x = 0),((sqrt(x + bx^2) - sqrtx)/(bx^(3"/"2)), "for" x > 0):}` is continuous at x = 0.
If \[f\left( x \right) = \begin{cases}\frac{x - 4}{\left| x - 4 \right|} + a, \text{ if } & x < 4 \\ a + b , \text{ if } & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, \text{ if } & x > 4\end{cases}\] is continuous at x = 4, find a, b.
Discuss the continuity of the f(x) at the indicated points: f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is
If \[f\left( x \right) = \begin{cases}a \sin\frac{\pi}{2}\left( x + 1 \right), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\] is continuous at x = 0, then a equals
The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] continuous at x = 0, is
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat:
Discuss the continuity and differentiability of f (x) = |log |x||.
Discuss the continuity and differentiability of
Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]
The function f (x) = e−|x| is
If the function f is continuous at x = 0
Where f(x) = 2`sqrt(x^3 + 1)` + a, for x < 0,
= `x^3 + a + b, for x > 0
and f (1) = 2, then find a and b.
Find `dy/dx if y = tan^-1 ((6x)/[ 1 - 5x^2])`
Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
= `1/12`, For x = 0
If the function
f(x) = x2 + ax + b, x < 2
= 3x + 2, 2≤ x ≤ 4
= 2ax + 5b, 4 < x
is continuous at x = 2 and x = 4, then find the values of a and b
Discuss the continuity of the function f(x) = sin x . cos x.
The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.
The set of points where the functions f given by f(x) = |x – 3| cosx is differentiable is ______.
f(x) = `{{:(|x - "a"| sin 1/(x - "a")",", "if" x ≠ 0),(0",", "if" x = "a"):}` at x = a
f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
f(x) = `{{:(3x - 8",", "if" x ≤ 5),(2"k"",", "if" x > 5):}` at x = 5
The composition of two continuous function is a continuous function.