मराठी

If F ( X ) = | Log 10 X | Then at X = 1 (A) F (X) is Continuous and F' (1+) = Log10 E (B) F (X) is Continuous and F' (1+) = Log10 E (C) F (X) is Continuous and F' (1−) - Mathematics

Advertisements
Advertisements

प्रश्न

If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1

पर्याय

  •  f (x) is continuous and f' (1+) = log10 e

  •  f (x) is continuous and f' (1+) = log10 e

  •  f (x) is continuous and f' (1) = log10 e

  •  f (x) is continuous and f' (1) = −log10 e

MCQ

उत्तर

f (x) is continuous and 

\[f'\](1+) = \[\log_{10} e\]

 f (x) is continuous and 

\[f'\]  (1) = − \[\log_{10} e\]

Given:

\[f\left( x \right) = \left| \log_{10} x \right| = \left| \frac{\log_e x}{\log_e 10} \right| = \left| \left( \log_e x \right) \times \left( \log_{10} e \right) \right| = \left( \log_{10} e \right) \left| \log_e x \right|\]
\[\Rightarrow f'\left( 1^+ \right) = \lim_{h \to 0} \frac{f\left( 1 + h \right) - f\left( 1 \right)}{h} = \lim_{h \to 0} \frac{\left( \log_{10} e \right) \left| \log_e \left( 1 + h \right) \right| - \left( \log_{10} e \right) \left| \log_e 1 \right|}{h} = \left( \log_{10} e \right) \lim_{h \to 0} \frac{\left| \log_e \left( 1 + h \right) \right|}{h} = \left( \log_{10} \left( e \right) \right) \times 1 = \left( \log_{10} e \right)\]

Also,

\[f'\left( 1^- \right) = \lim_{h \to 0} \frac{f\left( 1 - h \right) - f\left( 1 \right)}{h} = \lim_{h \to 0} \frac{\left( \log_{10} e \right) \left| \log_e \left( 1 - h \right) \right| - \left( \log_{10} e \right) \left| \log_e 1 \right|}{h} = - \left( \log_{10} e \right) \lim_{h \to 0} \frac{\left| \log_e \left( 1 - h \right) \right|}{- h} = - \left( \log_{10} e \right) \times 1 = - \left( \log_{10} e \right)\]

 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 3 | पृष्ठ ४२

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Examine the continuity of the following function :

`{:(,,f(x)= x^2 -x+9,"for",x≤3),(,,=4x+3,"for",x>3):}}"at "x=3`


Examine the following function for continuity:

f (x) = x – 5


If \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}; for & x \neq 1 \\ 2 ; for & x = 1\end{cases}\] Find whether f(x) is continuous at x = 1.

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}(x - a)\sin\left( \frac{1}{x - a} \right), & x \neq a \\ 0 , & x = a\end{array}at x = a \right.\]

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{2\left| x \right| + x^2}{x}, & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]

Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 


If   \[f\left( x \right) = \begin{cases}\frac{2^{x + 2} - 16}{4^x - 16}, \text{ if } & x \neq 2 \\ k , \text{ if }  & x = 2\end{cases}\]  is continuous at x = 2, find k.


Discuss the continuity of the f(x) at the indicated points:  f(x) = | x − 1 | + | x + 1 | at x = −1, 1.

 

If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\frac{e^x - 1}{\log_e (1 + 2x)}, & \text{ if }x \neq 0 \\ 7 , & \text{ if } x = 0\end{cases}\]

In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


If \[f\left( x \right) = \begin{cases}mx + 1 , & x \leq \frac{\pi}{2} \\ \sin x + n, & x > \frac{\pi}{2}\end{cases}\] is continuous at \[x = \frac{\pi}{2}\]  , then

 


The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


Show that f(x) = x1/3 is not differentiable at x = 0.


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

Discuss the continuity and differentiability of f (x) = |log |x||.


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text {  is }\] 


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


Let f (x) = |sin x|. Then,


If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is


Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`


Examine the continuity of the followin function : 

  `{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`   


Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`


Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if"  x ≠ 0),(0",",  "if"  x = 0):}` is discontinuous at x = 0.


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:(3x + 5",", "if"  x ≥ 2),(x^2",", "if"  x < 2):}` at x = 2


f(x) = `{{:((2^(x + 2) - 16)/(4^x - 16)",",  "if"  x ≠ 2),("k"",",  "if"  x = 2):}` at x = 2


The composition of two continuous function is a continuous function.


`lim_("x" -> 0) (2  "sin x - sin"  2 "x")/"x"^3` is equal to ____________.


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×