Advertisements
Advertisements
प्रश्न
If f (x) = |3 − x| + (3 + x), where (x) denotes the least integer greater than or equal to x, then f (x) is
पर्याय
continuous and differentiable at x = 3
continuous but not differentiable at x = 3
differentiable nut not continuous at x = 3
neither differentiable nor continuous at x = 3
उत्तर
(d) neither differentiable nor continuous at x = 3
We have,
\[f\left( x \right) = \left| 3 - x \right| + \left( 3 + x \right), \text { where } \left( x \right) \text{denotes the least integer greater than or equal to} x . \]
`f(x) = {(3-x +3+3,2<x<3),(-3 +x + 3 +4,3<x<4):}`
`⇒ f(x) = {(-x +9,2<x<3),(x+4 , 3<x<4):}`
Here,
\[\left( \text { LHL at x } = 3 \right) = \lim_{x \to 3^-} f\left( x \right) = \lim_{x \to 3^-} \left( - x + 9 \right) = - 3 + 9 = 6\]
\[\left( \text { RHL at x }= 3 \right) = \lim_{x \to 3^+} f\left( x \right) = \lim_{x \to 3^-} \left( x + 4 \right) = 3 + 4 = 7\]
\[\text { Since, } \left( \text { LHL at x } = 3 \right) \neq \left( \text { RHL at x }= 3 \right)\]
\[\text{Hence, given function is not continuous at x} = 3\]
\[\text{Therefore, the function will also not be differentiable at} x = 3\]
APPEARS IN
संबंधित प्रश्न
Determine the value of 'k' for which the following function is continuous at x = 3
`f(x) = {(((x + 3)^2 - 36)/(x - 3), x != 3), (k, x = 3):}`
Discuss the continuity of the following functions at the indicated point(s):
(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]
Discuss the continuity of the following functions at the indicated point(s):
(ii) \[f\left( x \right) = \left\{ \begin{array}{l}x^2 \sin\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the function f(x) at the point x = 0, where \[f\left( x \right) = \begin{cases}x, x > 0 \\ 1, x = 0 \\ - x, x < 0\end{cases}\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \binom{\frac{x^3 + x^2 - 16x + 20}{\left( x - 2 \right)^2}, x \neq 2}{k, x = 2}\]
Discuss the continuity of the f(x) at the indicated points: f(x) = | x − 1 | + | x + 1 | at x = −1, 1.
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}5 , & \text{ if } & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if } & x \geq 10\end{cases}\]
The function \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]
The value of f (0) so that the function
The value of k which makes \[f\left( x \right) = \begin{cases}\sin\frac{1}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] continuous at x = 0, is
If \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to
Is every continuous function differentiable?
If \[f\left( x \right) = \begin{cases}\frac{1}{1 + e^{1/x}} & , x \neq 0 \\ 0 & , x = 0\end{cases}\] then f (x) is
Find whether the following function is differentiable at x = 1 and x = 2 or not : \[f\left( x \right) = \begin{cases}x, & & x < 1 \\ 2 - x, & & 1 \leq x \leq 2 \\ - 2 + 3x - x^2 , & & x > 2\end{cases}\] .
Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0
= k for x = 0
is continuous at x = 0.
Find the points of discontinuity , if any for the function : f(x) = `(x^2 - 9)/(sinx - 9)`
If f(x) = `(e^(2x) - 1)/(ax)` . for x < 0 , a ≠ 0
= 1. for x = 0
= `(log(1 + 7x))/(bx)`. for x > 0 , b ≠ 0
is continuous at x = 0 . then find a and b
Find the value of 'k' if the function
f(x) = `(tan 7x)/(2x)`, for x ≠ 0.
= k for x = 0.
is continuous at x = 0.
Examine the continuity of the following function :
`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`
Examine the continuity of the followin function :
`{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`
If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`
Discuss the continuity of the function at the point given. If the function is discontinuous, then remove the discontinuity.
f (x) = `(sin^2 5x)/x^2` for x ≠ 0
= 5 for x = 0, at x = 0
If the function f is continuous at x = 2, then find 'k' where
f(x) = `(x^2 + 5)/(x - 1),` for 1< x ≤ 2
= kx + 1 , for x > 2
If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`
Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",", "if" -3 ≤ x < - 2),(x + 1",", "if" -2 ≤ x < 0),(x + 2",", "if" 0 ≤ x ≤ 1):}`
The function f(x) = |x| + |x – 1| is ______.
For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).
f(x) = `{{:((1 - cos 2x)/x^2",", "if" x ≠ 0),(5",", "if" x = 0):}` at x = 0
f(x) = |x| + |x − 1| at x = 1
Find the values of a and b such that the function f defined by
f(x) = `{{:((x - 4)/(|x - 4|) + "a"",", "if" x < 4),("a" + "b"",", "if" x = 4),((x - 4)/(|x - 4|) + "b"",", "if" x > 4):}`
is a continuous function at x = 4.
Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin 1/x",", "if" x ≠ 0),(0",", "if" x = 0):}` at x = 0
Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",", "if" x ≤ 1),("q"x + 2",", "if" x > 1):}` is differentiable at x = 1
If f is continuous on its domain D, then |f| is also continuous on D.
The composition of two continuous function is a continuous function.
`lim_("x" -> 0) (2 "sin x - sin" 2 "x")/"x"^3` is equal to ____________.