मराठी

Find the values of p and q so that f(x) = p,ifq,if{x2+3x+p, if x≤1qx+2, if x>1 is differentiable at x = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` is differentiable at x = 1

बेरीज

उत्तर

Given that: f(x) = `{{:(x^2 + 3x + "p"",",  "if"  x ≤ 1),("q"x + 2",",  "if"  x > 1):}` at x = 1.

L.H.L. f'(c) = `lim_(x -> 1^-) ("f"(x) - "f"("c"))/(x - "c")`

⇒ f'(1) = `lim_(x -> 1^-) ("f"(x) - "f"(1))/(x - 1)`

= `lim_(x -> 1^-) ((x^2 + 3x + "p") - (1 + 3 + "p"))/(x - 1)`

= `lim_("h" -> 0) ([(1 - "h")^2 + 3(1 - "h") + "p"] - [4 + "p"])/(1 - "h" - 1)`

= `lim_("h" -> 0) ([1 + "h"^2 - 2"h" + 3 - 3"h" + "p"] - [4 + "p"])/(-"h")`

= `lim_("h" -> 0) (["h"^2 - 5"h" + 4 + "p"] - [4 + "p"])/(-"h")`

= `lim_("h" -> 0) ("h"^2 - 5"h" + 4 + "p" - 4 - "p")/(-"h")`

= `lim_("h" -> 0) ("h"^2 - 5"h")/(-"h")`

= `lim_("h" -> 0) ("h"["h" - 5])/(-"h")`

= 5

R.H.L. f'(1) = `lim_(x -> 1^+) ("f"(x) - "f"(1))/(x - 1)`

= `lim_(x -> 1^+) (("q"x + 2) - (1 + 3 + "p"))/(x - 1)`

= `lim_("h" -> 0) (["q"(1 + "h") + 2] - [4 + "p"])/(1 + "h" - 1)`

= `lim_("h" -> 0) ("q" + "qh" + 2 - 4 - "p")/"h"`

= `lim_("h" -> 0) ("qh" + "q" - 2 - "p")/"h"`

For existing the limit

q – 2 – p = 0

⇒ q – p = 2

⇒ `lim_("h" -> 0) ("qh" - 0)/"h"` = q

If L.H.L. f'(1) = R.H.L. f'(1) then q = 5.

Now putting the value of q in equation (i)

5 – p = 2

⇒ p = 3.

Hence, value of p is 3 and that of q is 5.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 5: Continuity And Differentiability - Exercise [पृष्ठ ११२]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 5 Continuity And Differentiability
Exercise | Q 79 | पृष्ठ ११२

व्हिडिओ ट्यूटोरियलVIEW ALL [4]

संबंधित प्रश्‍न

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}(x - a)\sin\left( \frac{1}{x - a} \right), & x \neq a \\ 0 , & x = a\end{array}at x = a \right.\]

 


Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{1 - x^n}{1 - x}, & x \neq 1 \\ n - 1 , & x = 1\end{array}n \in N \right.at x = 1\]

For what value of k is the following function continuous at x = 1? \[f\left( x \right) = \begin{cases}\frac{x^2 - 1}{x - 1}, & x \neq 1 \\ k , & x = 1\end{cases}\]


Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & \text{ if } - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & \text{ if }  0 \leq x \leq 1\end{cases}\]


The function 

\[f\left( x \right) = \frac{4 - x^2}{4x - x^3}\]

 


The function  \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]

 


If the function \[f\left( x \right) = \begin{cases}\left( \cos x \right)^{1/x} , & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then the value of k is


Let  \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set

 


\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


The values of the constants ab and c for which the function  \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are

 


If  \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to


Show that the function 

\[f\left( x \right) = \begin{cases}x^m \sin\left( \frac{1}{x} \right) & , x \neq 0 \\ 0 & , x = 0\end{cases}\]

(i) differentiable at x = 0, if m > 1
(ii) continuous but not differentiable at x = 0, if 0 < m < 1
(iii) neither continuous nor differentiable, if m ≤ 0


If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


Discuss the continuity and differentiability of 

\[f\left( x \right) = \begin{cases}\left( x - c \right) \cos \left( \frac{1}{x - c} \right), & x \neq c \\ 0 , & x = c\end{cases}\]

Give an example of a function which is continuos but not differentiable at at a point.


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

Let f (x) = |x| and g (x) = |x3|, then


The function f (x) = sin−1 (cos x) is


The set of points where the function f (x) = x |x| is differentiable is 

 


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4


Examine the continuity off at x = 1, if

f (x) = 5x - 3 , for 0 ≤ x ≤ 1

       = x2 + 1 , for 1 ≤ x ≤ 2


If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`


Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`


Examine the differentiability of the function f defined by
f(x) = `{{:(2x + 3",",  "if"  -3 ≤ x < - 2),(x + 1",",  "if"  -2 ≤ x < 0),(x + 2",",  "if"  0 ≤ x ≤ 1):}`


f(x) = |x| + |x − 1| at x = 1


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


Given the function f(x) = `1/(x + 2)`. Find the points of discontinuity of the composite function y = f(f(x))


Examine the differentiability of f, where f is defined by
f(x) = `{{:(x^2 sin  1/x",",  "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×