Advertisements
Advertisements
Question
Find the values of p and q so that f(x) = `{{:(x^2 + 3x + "p"",", "if" x ≤ 1),("q"x + 2",", "if" x > 1):}` is differentiable at x = 1
Solution
Given that: f(x) = `{{:(x^2 + 3x + "p"",", "if" x ≤ 1),("q"x + 2",", "if" x > 1):}` at x = 1.
L.H.L. f'(c) = `lim_(x -> 1^-) ("f"(x) - "f"("c"))/(x - "c")`
⇒ f'(1) = `lim_(x -> 1^-) ("f"(x) - "f"(1))/(x - 1)`
= `lim_(x -> 1^-) ((x^2 + 3x + "p") - (1 + 3 + "p"))/(x - 1)`
= `lim_("h" -> 0) ([(1 - "h")^2 + 3(1 - "h") + "p"] - [4 + "p"])/(1 - "h" - 1)`
= `lim_("h" -> 0) ([1 + "h"^2 - 2"h" + 3 - 3"h" + "p"] - [4 + "p"])/(-"h")`
= `lim_("h" -> 0) (["h"^2 - 5"h" + 4 + "p"] - [4 + "p"])/(-"h")`
= `lim_("h" -> 0) ("h"^2 - 5"h" + 4 + "p" - 4 - "p")/(-"h")`
= `lim_("h" -> 0) ("h"^2 - 5"h")/(-"h")`
= `lim_("h" -> 0) ("h"["h" - 5])/(-"h")`
= 5
R.H.L. f'(1) = `lim_(x -> 1^+) ("f"(x) - "f"(1))/(x - 1)`
= `lim_(x -> 1^+) (("q"x + 2) - (1 + 3 + "p"))/(x - 1)`
= `lim_("h" -> 0) (["q"(1 + "h") + 2] - [4 + "p"])/(1 + "h" - 1)`
= `lim_("h" -> 0) ("q" + "qh" + 2 - 4 - "p")/"h"`
= `lim_("h" -> 0) ("qh" + "q" - 2 - "p")/"h"`
For existing the limit
q – 2 – p = 0
⇒ q – p = 2
⇒ `lim_("h" -> 0) ("qh" - 0)/"h"` = q
If L.H.L. f'(1) = R.H.L. f'(1) then q = 5.
Now putting the value of q in equation (i)
5 – p = 2
⇒ p = 3.
Hence, value of p is 3 and that of q is 5.
APPEARS IN
RELATED QUESTIONS
If f(x)= `{((sin(a+1)x+2sinx)/x,x<0),(2,x=0),((sqrt(1+bx)-1)/x,x>0):}`
is continuous at x = 0, then find the values of a and b.
If \[f\left( x \right) = \begin{cases}e^{1/x} , if & x \neq 0 \\ 1 , if & x = 0\end{cases}\] find whether f is continuous at x = 0.
Show that
is discontinuous at x = 0.
Show that
Discuss the continuity of the following functions at the indicated point(s):
(i) \[f\left( x \right) = \begin{cases}\left| x \right| \cos\left( \frac{1}{x} \right), & x \neq 0 \\ 0 , & x = 0\end{cases}at x = 0\]
Find the value of 'a' for which the function f defined by
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}kx + 1, if & x \leq 5 \\ 3x - 5, if & x > 5\end{cases}\] at x = 5
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}5 , & \text{ if } & x \leq 2 \\ ax + b, & \text{ if } & 2 < x < 10 \\ 21 , & \text{ if } & x \geq 10\end{cases}\]
If \[f\left( x \right) = \left| \log_{10} x \right|\] then at x = 1
The function \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]
The value of f (0), so that the function
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at \[x = \frac{\pi}{2}\], if
If f is defined by f (x) = x2, find f'(2).
Discuss the continuity and differentiability of f (x) = |log |x||.
If f (x) is differentiable at x = c, then write the value of
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
The set of points where the function f (x) given by f (x) = |x − 3| cos x is differentiable, is
Discuss the continuity of the function f at x = 0
If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0
= 1, for x = 0
Find the value of 'k' if the function
f(x) = `(tan 7x)/(2x)`, for x ≠ 0.
= k for x = 0.
is continuous at x = 0.
Discuss the continuity of the function `f(x) = (3 - sqrt(2x + 7))/(x - 1)` for x ≠ 1
= `-1/3` for x = 1, at x = 1
Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
= `1/8(log 5)^2,` for x = 0
Show that the function f given by f(x) = `{{:(("e"^(1/x) - 1)/("e"^(1/x) + 1)",", "if" x ≠ 0),(0",", "if" x = 0):}` is discontinuous at x = 0.
Let f(x) = `{{:((1 - cos 4x)/x^2",", "if" x < 0),("a"",", "if" x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if" x > 0):}`. For what value of a, f is continuous at x = 0?
The value of k which makes the function defined by f(x) = `{{:(sin 1/x",", "if" x ≠ 0),("k"",", "if" x = 0):}`, continuous at x = 0 is ______.
Show that f(x) = |x – 5| is continuous but not differentiable at x = 5.
If f is continuous on its domain D, then |f| is also continuous on D.
If the following function is continuous at x = 2 then the value of k will be ______.
f(x) = `{{:(2x + 1",", if x < 2),( k",", if x = 2),(3x - 1",", if x > 2):}`