English

Find the Value of 'A' for Which the Function F Defined by F ( X ) = { a Sin π 2 ( X + 1 ) , X ≤ 0 Tan X − Sin X X 3 , X > 0 is Continuous at X = 0. - Mathematics

Advertisements
Advertisements

Question

Find the value of 'a' for which the function f defined by

\[f\left( x \right) = \begin{cases}a\sin\frac{\pi}{2}(x + 1), & x \leq 0 \\ \frac{\tan x - \sin x}{x^3}, & x > 0\end{cases}\]  is continuous at x = 0.
 

 

Sum

Solution

\[f\left( x \right) = \binom{a \sin \frac{\pi}{2}\left( x + 1 \right), x \leq 0}{\frac{\tan x - \sin x}{x^3}, x > 0}\]

We have

(LHL at x = 0) = 

\[\lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( 0 - h \right) = \lim_{h \to 0} f\left( - h \right) = \lim_{h \to 0} a \sin \frac{\pi}{2}\left( - h + 1 \right) = a \sin\frac{\pi}{2} = a\]

(RHL at x = 0) = 

\[\lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( 0 + h \right) = \lim_{h \to 0} f\left( h \right) = \lim_{h \to 0} \frac{\tan h - \sin h}{h^3}\]

\[\Rightarrow \lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} \frac{\frac{\sin h}{\cos h} - \sin h}{h^3}\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} \frac{\frac{\sin h}{\cos h}\left( 1 - \cos h \right)}{h^3}\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} \frac{\left( 1 - \cos h \right)\tan h}{h^3}\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} \frac{2 \sin^2 \frac{h}{2}\tan h}{4\frac{h^2}{4} \times h}\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \frac{2}{4} \lim_{h \to 0} \frac{\sin^2 \frac{h}{2}\tan h}{\frac{h^2}{4} \times h}\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \frac{1}{2} \lim_{h \to 0} \left( \frac{\sin\frac{h}{2}}{\frac{h}{2}} \right)^2 \lim_{h \to 0} \frac{\tan h}{h}\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \frac{1}{2} \times 1 \times 1\]

\[ \Rightarrow \lim_{x \to 0^+} f\left( x \right) = \frac{1}{2}\]

\[If f\left( x \right) \text{is continuous at} x = 0, then\]

\[ \lim_{x \to 0^-} f\left( x \right) = \lim_{x \to 0^+} f\left( x \right)\]

\[ \Rightarrow a = \frac{1}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.1 [Page 18]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.1 | Q 13 | Page 18

RELATED QUESTIONS

Find the value of 'k' if the function

`f(X)=(tan7x)/(2x) ,  "for " x != 0 `

`=k`,            for x=0

is continuos at x=0


Discuss the continuity of the function f, where f is defined by `f(x) = {(3, ","if 0 <= x <= 1),(4, ","if 1 < x < 3),(5, ","if 3 <= x <= 10):}`


Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): 

\[f\left( x \right) = \binom{\left| x - a \right|\sin\left( \frac{1}{x - a} \right), for x \neq a}{0, for x = a}at x = a\] 

Discuss the continuity of \[f\left( x \right) = \begin{cases}2x - 1 & , x < 0 \\ 2x + 1 & , x \geq 0\end{cases} at x = 0\]


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}k x^2 , if & x \leq 2 \\ 3 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]


Find the value of k for which \[f\left( x \right) = \begin{cases}\frac{1 - \cos 4x}{8 x^2}, \text{ when}  & x \neq 0 \\ k ,\text{ when }  & x = 0\end{cases}\] is continuous at x = 0;

 


If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


\[f\left( x \right) = \begin{cases}\frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, & - 1 \leq x < 0 \\ \frac{2x + 1}{x - 2} , & 0 \leq x \leq 1\end{cases}\]is continuous in the interval [−1, 1], then p is equal to

 


The function  \[f\left( x \right) = \frac{x^3 + x^2 - 16x + 20}{x - 2}\] is not defined for x = 2. In order to make f (x) continuous at x = 2, Here f (2) should be defined as

 


If  \[f\left( x \right) = \begin{cases}\frac{1 - \sin^2 x}{3 \cos^2 x} , & x < \frac{\pi}{2} \\ a , & x = \frac{\pi}{2} \\ \frac{b\left( 1 - \sin x \right)}{\left( \pi - 2x \right)^2}, & x > \frac{\pi}{2}\end{cases}\]. Then, f (x) is continuous at  \[x = \frac{\pi}{2}\], if

 


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

Is every differentiable function continuous?


Is every continuous function differentiable?


Give an example of a function which is continuos but not differentiable at at a point.


Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.


Let \[f\left( x \right) = \left( x + \left| x \right| \right) \left| x \right|\]


Let \[f\left( x \right) = \begin{cases}\frac{1}{\left| x \right|} & for \left| x \right| \geq 1 \\ a x^2 + b & for \left| x \right| < 1\end{cases}\] If f (x) is continuous and differentiable at any point, then

 

 

 


Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4


`f(x)=(x^2-9)/(x - 3)` is not defined at x = 3. what value should be assigned to f(3) for continuity of f(x) at = 3?


Discuss the continuity of the function f at x = 0

If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0

         = 1,   for x = 0


Find the value of 'k' if the function 
f(x) = `(tan 7x)/(2x)`,                   for x ≠ 0.
      = k                                        for x = 0.
is continuous at x = 0.


If the function
f(x) = x2 + ax + b,         x < 2

      = 3x + 2,                 2≤ x ≤ 4

      = 2ax + 5b,             4 < x

is continuous at x = 2 and x = 4, then find the values of a and b


Discuss the continuity of the function f at x = 0, where
f(x) = `(5^x + 5^-x - 2)/(cos2x - cos6x),` for x ≠ 0
      = `1/8(log 5)^2,`  for x = 0


If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)`  so that f (x) becomes continuous at x = `pi/4`


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


The number of points at which the function f(x) = `1/(log|x|)` is discontinuous is ______.


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


A continuous function can have some points where limit does not exist.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:(|x|cos  1/x",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0


f(x) = `{{:(("e"^(1/x))/(1 + "e"^(1/x))",", "if"  x ≠ 0),(0",", "if"  x = 0):}` at x = 0 


f(x) = `{{:(3x - 8",",  "if"  x ≤ 5),(2"k"",",  "if"  x > 5):}` at x = 5


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


If f is continuous on its domain D, then |f| is also continuous on D.


Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×