English

Discuss Continuity of F(X) = X 3 − 64 √ X 2 + 9 − 5 for X≠4 = 10 for X = 4 at X = 4 - Mathematics and Statistics

Advertisements
Advertisements

Question

Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4 

= 10 for x = 4  at x = 4

Sum

Solution

`f(4) = 10`

`lim_(x→4)f(x)=lim_(x→4)(x^3-64)/(sqrt(x^2+9)-5)`


`=lim_(x→4)(x^3-64)/(sqrt(x^2+9)-5)`


`lim_(x→4)(x^3-4^3)/(sqrt(x^2+9)-5)xx(sqrt(x^2+9)+5)/(sqrt(x^2+9)+5)`


`Lim_(x→4)((x^3-4^3)(sqrtx^2+9+5))/((sqrtx^2+9)^2-(-5)^2)`


`Lim_(x→4) ((x-4)(x^2+4x+16)(sqrt(x^2+9)+5))/(x^2+9-25)`    .......`[a^3 – b^3 = (a – b) (a^2 + ab + b^2))`


`Lim_(x→4) ((x-4)(x^2+4x+16)(sqrt(x^2+9)+5))/(x^2-16)`


`Lim_(x→4) ((x-4)(x^2+4x+16)(sqrt(x^2+9)+5))/((x-4)(x+4)`)


`Lim_(x→4) ((x^2+4x+16)(sqrt(x^2+9)+5))/(x+4)`


`(((4)^2+4(4)+16)(sqrt(4^2+9)+5))/(4+4)`


`((16+16+16)(sqrt(16+9)+5))/8`


`((16+16+16)(sqrt(25)+5))/8`


`((16+16+16)(5+5))/8`


`(48x10)/8`

`f(x)lim_(x→4)=60`

`lim_(x→4) f(x)≠f(4)` 

∴ f (x) is not continuous at x = 4.

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March)

APPEARS IN

RELATED QUESTIONS

Examine the following function for continuity:

`f (x)1/(x - 5), x != 5`


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}k( x^2 + 2), \text{if} & x \leq 0 \\ 3x + 1 , \text{if} & x > 0\end{cases}\]


Prove that  \[f\left( x \right) = \begin{cases}\frac{x - \left| x \right|}{x}, & x \neq 0 \\ 2 , & x = 0\end{cases}\] is discontinuous at x = 0

 


Let\[f\left( x \right) = \left\{ \begin{array}\frac{1 - \sin^3 x}{3 \cos^2 x} , & \text{ if }  x < \frac{\pi}{2} \\ a , & \text{ if }  x = \frac{\pi}{2} \\ \frac{b(1 - \sin x)}{(\pi - 2x )^2}, & \text{ if }  x > \frac{\pi}{2}\end{array} . \right.\] ]If f(x) is continuous at x = \[\frac{\pi}{2}\] , find a and b.

 

Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}\frac{e^x - 1}{\log_e (1 + 2x)}, & \text{ if }x \neq 0 \\ 7 , & \text{ if } x = 0\end{cases}\]

Prove that
\[f\left( x \right) = \begin{cases}\frac{\sin x}{x} , & x < 0 \\ x + 1 , & x \geq 0\end{cases}\] is everywhere continuous.

 


The function  \[f\left( x \right) = \begin{cases}\frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 0 , & x = 0\end{cases}\]

 


The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

The value of f (0) so that the function 

\[f\left( x \right) = \frac{2 - \left( 256 - 7x \right)^{1/8}}{\left( 5x + 32 \right)^{1/5} - 2},\]  0 is continuous everywhere, is given by


Show that f(x) = |x − 2| is continuous but not differentiable at x = 2. 


Find whether the function is differentiable at x = 1 and x = 2 

\[f\left( x \right) = \begin{cases}x & x \leq 1 \\ \begin{array} 22 - x  \\ - 2 + 3x - x^2\end{array} & \begin{array}11 \leq x \leq 2 \\ x > 2\end{array}\end{cases}\]

If f is defined by f (x) = x2, find f'(2).


If f (x) is differentiable at x = c, then write the value of 

\[\lim_{x \to c} f \left( x \right)\]

 If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1


If Y = tan-1 `[(cos 2x - sin 2x)/(sin2x + cos 2x)]` then find `(dy)/(dx)`


Let f(x) = `{{:((1 - cos 4x)/x^2",",  "if"  x < 0),("a"",",  "if"  x = 0),(sqrt(x)/(sqrt(16) + sqrt(x) - 4)",", "if"  x > 0):}`. For what value of a, f is continuous at x = 0?


The number of points at which the function f(x) = `1/(x - [x])` is not continuous is ______.


f(x) = `{{:(3x + 5",", "if"  x ≥ 2),(x^2",", "if"  x < 2):}` at x = 2


f(x) = `{{:((1 - cos "k"x)/(xsinx)",",   "if"  x ≠ 0),(1/2",",  "if"  x = 0):}` at x = 0


A function f: R → R satisfies the equation f( x + y) = f(x) f(y) for all x, y ∈ R, f(x) ≠ 0. Suppose that the function is differentiable at x = 0 and f′(0) = 2. Prove that f′(x) = 2f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×