English

The value of f (0), so that the function f ( x ) = √ a 2 − a x + x 2 − √ a 2 + a x + x 2 √ a + x − √ a − x becomes continuous for all x, given by - Mathematics

Advertisements
Advertisements

Question

The value of f (0), so that the function 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]   becomes continuous for all x, given by

Options

  • a3/2

  • a1/2 

  • a1/2 

  • a3/2

MCQ

Solution

\[- a^\frac{1}{2}\]

Given: 

\[f\left( x \right) = \frac{\sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2}}{\sqrt{a + x} - \sqrt{a - x}}\]

\[\Rightarrow f\left( x \right) = \frac{\left( \sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2} \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}{\left( \sqrt{a + x} - \sqrt{a - x} \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{\left( a^2 - ax + x^2 - \left( a^2 + ax + x^2 \right) \right)}{\left( \sqrt{a + x} - \sqrt{a - x} \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{\left( - 2ax \right)\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( \sqrt{a + x} - \sqrt{a - x} \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)\left( \sqrt{a + x} + \sqrt{a - x} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{\left( - 2ax \right)\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( a + x - a + x \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{\left( - 2ax \right)\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( 2x \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{- a\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]

If  \[f\left( x \right)\]  is continuous for all x, then it will be continuous at x = 0 as well. 

So, if  \[f\left( x \right)\]  is continuous at x = 0, then

 is continuous at x = 0, then
\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]
\[\Rightarrow \lim_{x \to 0} \left[ \frac{- a\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)} \right] = f\left( 0 \right)\]
\[ \Rightarrow \left[ \frac{- 2a\left( \sqrt{a} \right)}{\left( \sqrt{a^2} + \sqrt{a^2} \right)} \right] = f\left( 0 \right)\]
\[ \Rightarrow \left[ \frac{- 2a\left( \sqrt{a} \right)}{\left( a + a \right)} \right] = f\left( 0 \right)\]
\[ \Rightarrow f\left( 0 \right) = - \sqrt{a}\]
shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 16 | Page 44

RELATED QUESTIONS

Discuss the continuity of the function f, where f is defined by `f(x) = {(-2,"," if x <= -1),(2x, "," if -1 < x <= 1),(2, "," if x > 1):}`


If \[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, when & x \neq 0 \\ 1 , when & x = 0\end{cases}\]

Find whether f(x) is continuous at x = 0.

 

Show that

\[f\left( x \right)\] = \begin{cases}\frac{x - \left| x \right|}{2}, when & x \neq 0 \\ 2 , when & x = 0\end{cases}

is discontinuous at x = 0.

 

Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]


Show that 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{\tan 2x} , if x < 0 \\ \frac{3}{2} , if x = 0 \\ \frac{\log(1 + 3x)}{e^{2x} - 1} , if x > 0\end{cases}\text{is continuous at} x = 0\]


Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\] 


Determine the value of the constant k so that the function 

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x^2 - 3x + 2}{x - 1}, if & x \neq 1 \\ k , if & x = 1\end{array}\text{is continuous at x} = 1 \right.\] 


For what value of k is the function 

\[f\left( x \right) = \begin{cases}\frac{\sin 5x}{3x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0?\]


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;  \[f\left( x \right) = \begin{cases}\frac{x^2 - 25}{x - 5}, & x \neq 5 \\ k , & x = 5\end{cases}\]at x = 5


If the functions f(x), defined below is continuous at x = 0, find the value of k. \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2x}{2 x^2}, & x < 0 \\ k , & x = 0 \\ \frac{x}{\left| x \right|} , & x > 0\end{cases}\] 

 


Find all point of discontinuity of the function 

\[f\left( t \right) = \frac{1}{t^2 + t - 2}, \text{ where }  t = \frac{1}{x - 1}\]

If  \[f\left( x \right) = \left\{ \begin{array}a x^2 + b , & 0 \leq x < 1 \\ 4 , & x = 1 \\ x + 3 , & 1 < x \leq 2\end{array}, \right.\] then the value of (ab) for which f (x) cannot be continuous at x = 1, is

 


The points of discontinuity of the function\[f\left( x \right) = \begin{cases}\frac{1}{5}\left( 2 x^2 + 3 \right) , & x \leq 1 \\ 6 - 5x , & 1 < x < 3 \\ x - 3 , & x \geq 3\end{cases}\text{ is } \left( are \right)\]  


If  \[f\left( x \right) = \begin{cases}\frac{\sin \left( \cos x \right) - \cos x}{\left( \pi - 2x \right)^2}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k is equal to


Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).


Show that the function f defined as follows, is continuous at x = 2, but not differentiable thereat: 

\[f\left( x \right) = \begin{cases}3x - 2, & 0 < x \leq 1 \\ 2 x^2 - x, & 1 < x \leq 2 \\ 5x - 4, & x > 2\end{cases}\]

If \[f\left( x \right) = \begin{cases}a x^2 - b, & \text { if }\left| x \right| < 1 \\ \frac{1}{\left| x \right|} , & \text { if }\left| x \right| \geq 1\end{cases}\]  is differentiable at x = 1, find a, b.


Is every differentiable function continuous?


Is every continuous function differentiable?


Give an example of a function which is continuos but not differentiable at at a point.


Let f (x) = |x| and g (x) = |x3|, then


If \[f\left( x \right) = \left| \log_e |x| \right|\] 


Let f (x) = |sin x|. Then,


The function f (x) =  |cos x| is


Let \[f\left( x \right) = \begin{cases}1 , & x \leq - 1 \\ \left| x \right|, & - 1 < x < 1 \\ 0 , & x \geq 1\end{cases}\] Then, f is 


If y = ( sin x )x , Find `dy/dx`


If the function f is continuous at x = 0 then find f(0),
where f(x) =  `[ cos 3x - cos x ]/x^2`, `x!=0`


If f (x) = `(1 - "sin x")/(pi - "2x")^2` , for x ≠ `pi/2` is continuous at x = `pi/4` , then find `"f"(pi/2) .`


 If the function f is continuous at x = I, then find f(1), where f(x) = `(x^2 - 3x + 2)/(x - 1),` for x ≠ 1


For continuity, at x = a, each of `lim_(x -> "a"^+) "f"(x)` and `lim_(x -> "a"^-) "f"(x)` is equal to f(a).


y = |x – 1| is a continuous function.


Examine the continuity of the function f(x) = x3 + 2x2 – 1 at x = 1


f(x) = `{{:((1 - cos 2x)/x^2",", "if"  x ≠ 0),(5",", "if"  x = 0):}` at x = 0


f(x) = `{{:((sqrt(1 + "k"x) - sqrt(1 - "k"x))/x",",  "if" -1 ≤ x < 0),((2x + 1)/(x - 1)",",  "if"  0 ≤ x ≤ 1):}` at x = 0


Prove that the function f defined by 
f(x) = `{{:(x/(|x| + 2x^2)",",  x ≠ 0),("k",  x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.


If f(x) = `x^2 sin  1/x` where x ≠ 0, then the value of the function f at x = 0, so that the function is continuous at x = 0, is ______.


The value of k (k < 0) for which the function f defined as

f(x) = `{((1-cos"kx")/("x"sin"x")","  "x" ≠ 0),(1/2","  "x" = 0):}`

is continuous at x = 0 is:


If the following function is continuous at x = 2 then the value of k will be ______.

f(x) = `{{:(2x + 1",", if x < 2),(                 k",", if x = 2),(3x - 1",", if x > 2):}`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×