Advertisements
Advertisements
प्रश्न
The value of f (0), so that the function
पर्याय
a3/2
a1/2
−a1/2
−a3/2
उत्तर
\[- a^\frac{1}{2}\]
Given:
\[\Rightarrow f\left( x \right) = \frac{\left( \sqrt{a^2 - ax + x^2} - \sqrt{a^2 + ax + x^2} \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}{\left( \sqrt{a + x} - \sqrt{a - x} \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{\left( a^2 - ax + x^2 - \left( a^2 + ax + x^2 \right) \right)}{\left( \sqrt{a + x} - \sqrt{a - x} \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{\left( - 2ax \right)\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( \sqrt{a + x} - \sqrt{a - x} \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)\left( \sqrt{a + x} + \sqrt{a - x} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{\left( - 2ax \right)\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( a + x - a + x \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{\left( - 2ax \right)\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( 2x \right)\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
\[ \Rightarrow f\left( x \right) = \frac{- a\left( \sqrt{a + x} + \sqrt{a - x} \right)}{\left( \sqrt{a^2 - ax + x^2} + \sqrt{a^2 + ax + x^2} \right)}\]
If \[f\left( x \right)\] is continuous for all x, then it will be continuous at x = 0 as well.
So, if \[f\left( x \right)\] is continuous at x = 0, then
\[ \Rightarrow \left[ \frac{- 2a\left( \sqrt{a} \right)}{\left( \sqrt{a^2} + \sqrt{a^2} \right)} \right] = f\left( 0 \right)\]
\[ \Rightarrow \left[ \frac{- 2a\left( \sqrt{a} \right)}{\left( a + a \right)} \right] = f\left( 0 \right)\]
\[ \Rightarrow f\left( 0 \right) = - \sqrt{a}\]
APPEARS IN
संबंधित प्रश्न
Determine the value of 'k' for which the following function is continuous at x = 3
`f(x) = {(((x + 3)^2 - 36)/(x - 3), x != 3), (k, x = 3):}`
A function f(x) is defined as
Show that f(x) is continuous at x = 3
Discuss the continuity of the following functions at the indicated point(s): (iv) \[f\left( x \right) = \left\{ \begin{array}{l}\frac{e^x - 1}{\log(1 + 2x)}, if & x \neq a \\ 7 , if & x = 0\end{array}at x = 0 \right.\]
Discuss the continuity of the following functions at the indicated point(s):
Discuss the continuity of the function f(x) at the point x = 1/2, where \[f\left( x \right) = \begin{cases}x, 0 \leq x < \frac{1}{2} \\ \frac{1}{2}, x = \frac{1}{2} \\ 1 - x, \frac{1}{2} < x \leq 1\end{cases}\]
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point;
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 + x^3 + 2 x^2}{\tan^{- 1} x}, & \text{ if } x \neq 0 \\ 10 , & \text{ if } x = 0\end{cases}\]
Let f (x) = | x | + | x − 1|, then
Let \[f\left( x \right) = \begin{cases}\frac{x^4 - 5 x^2 + 4}{\left| \left( x - 1 \right) \left( x - 2 \right) \right|}, & x \neq 1, 2 \\ 6 , & x = 1 \\ 12 , & x = 2\end{cases}\]. Then, f (x) is continuous on the set
The values of the constants a, b and c for which the function \[f\left( x \right) = \begin{cases}\left( 1 + ax \right)^{1/x} , & x < 0 \\ b , & x = 0 \\ \frac{\left( x + c \right)^{1/3} - 1}{\left( x + 1 \right)^{1/2} - 1}, & x > 0\end{cases}\] may be continuous at x = 0, are
Show that f(x) = |x − 2| is continuous but not differentiable at x = 2.
Show that f(x) = x1/3 is not differentiable at x = 0.
Show that \[f\left( x \right) =\]`{(12x, -,13, if , x≤3),(2x^2, +,5, if x,>3):}` is differentiable at x = 3. Also, find f'(3).
Find whether the function is differentiable at x = 1 and x = 2
If f is defined by f (x) = x2, find f'(2).
Write the number of points where f (x) = |x| + |x − 1| is continuous but not differentiable.
The function f (x) = sin−1 (cos x) is
If \[f\left( x \right) = \sqrt{1 - \sqrt{1 - x^2}},\text{ then } f \left( x \right)\text { is }\]
If \[f\left( x \right) = x^2 + \frac{x^2}{1 + x^2} + \frac{x^2}{\left( 1 + x^2 \right)} + . . . + \frac{x^2}{\left( 1 + x^2 \right)} + . . . . ,\]
then at x = 0, f (x)
Find k, if f(x) =`log (1+3x)/(5x)` for x ≠ 0
= k for x = 0
is continuous at x = 0.
Discuss continuity of f(x) =`(x^3-64)/(sqrt(x^2+9)-5)` For x ≠ 4
= 10 for x = 4 at x = 4
Discuss the continuity of the function f at x = 0
If f(x) = `(2^(3x) - 1)/tanx`, for x ≠ 0
= 1, for x = 0
Examine the continuity off at x = 1, if
f (x) = 5x - 3 , for 0 ≤ x ≤ 1
= x2 + 1 , for 1 ≤ x ≤ 2
Examine the continuity of the following function :
`{:(,f(x),=(x^2-16)/(x-4),",","for "x!=4),(,,=8,",","for "x=4):}} " at " x=4`
Discuss the continuity of function f at x = 0.
Where f(X) = `[ [sqrt ( 4 + x ) - 2 ]/ ( 3x )]`, For x ≠ 0
= `1/12`, For x = 0
Examine the continuity of the followin function :
`{:(,f(x),=x^2cos(1/x),",","for "x!=0),(,,=0,",","for "x=0):}}" at "x=0`
The probability distribution function of continuous random variable X is given by
f( x ) = `x/4`, 0 < x < 2
= 0, Otherwise
Find P( x ≤ 1)
Find the value of the constant k so that the function f defined below is continuous at x = 0, where f(x) = `{{:((1 - cos4x)/(8x^2)",", x ≠ 0),("k"",", x = 0):}`
If f(x) = `(sqrt(2) cos x - 1)/(cot x - 1), x ≠ pi/4` find the value of `"f"(pi/4)` so that f (x) becomes continuous at x = `pi/4`
The function f(x) = [x], where [x] denotes the greatest integer function, is continuous at ______.
y = |x – 1| is a continuous function.
f(x) = `{{:((2x^2 - 3x - 2)/(x - 2)",", "if" x ≠ 2),(5",", "if" x = 2):}` at x = 2
Prove that the function f defined by
f(x) = `{{:(x/(|x| + 2x^2)",", x ≠ 0),("k", x = 0):}`
remains discontinuous at x = 0, regardless the choice of k.
`lim_("x" -> "x" //4) ("cos x - sin x")/("x"- "x" /4)` is equal to ____________.
Write the number of points where f(x) = |x + 2| + |x - 3| is not differentiable.