मराठी

The Function F ( X ) = ⎧ ⎪ ⎨ ⎪ ⎩ 1 , | X | ≥ 1 1 N 2 , 1 N < | X | < 1 N − 1 , N = 2 , 3 , . . . 0 , X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

The function  \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\] 

पर्याय

  • is discontinuous at finitely many points

  • is continuous everywhere

  • is discontinuous only at  \[x = \pm \frac{1}{n}\]n ∈ Z − {0} and x = 0

  • none of these

MCQ

उत्तर

Given: 

\[f\left( x \right) = \begin{cases}1, \left| x \right| \geq 1 \\ \frac{1}{n^2}, \frac{1}{n} < \left| x \right| < \frac{1}{n - 1} \\ 0, x = 0\end{cases}\]
\[\Rightarrow f\left( x \right) = \begin{cases}1, - 1 \leq x \leq 1 \\ \frac{1}{n^2}, \frac{1}{n} < \left| x \right| < \frac{1}{n - 1} \\ 0, x = 0\end{cases}\]

Case 1:

\[\left| x \right| > 1 \text{ or } x < - 1 \text{ and } x > 1\]

Here, 

\[f\left( x \right) = 1\] , which is the constant function
So,
\[f\left( x \right)\]  is continuous for all

 \[\left| x \right| \geq 1 \text{ or } x \leq - 1 \text{ and } x \geq 1 .\]

Case 2:

\[\frac{1}{n} < \left| x \right| < \frac{1}{n - 1}, n = 2, 3, 4, . . .\]

Here,

\[f\left( x \right) = \frac{1}{n^2}, n = 2, 3, 4, . . .\], which is also a constant function.

So,

\[f\left( x \right)\]  is continuous for all
\[\frac{1}{n} < \left| x \right| < \frac{1}{n - 1}, n = 2, 3, 4, . . . .\]
Case 3: Consider the points x = -1 and x = 1.
We have
\[\left( LHL \text{ at } x = - 1 \right) = \lim_{x \to - 1^-} f\left( x \right) = \lim_{x \to - 1^-} 1 = 1\]
\[\left( RHL \text{ at } x = - 1 \right) = \lim_{x \to - 1^+} f\left( x \right) = \lim_{x \to - 1^+} \frac{1}{4} = \frac{1}{4} \left[ \because f\left( x \right) = \frac{1}{4} \text{ for  }- 1 < x < \frac{1}{2}, \text{ when } n = 2 \right]\]
\[\text{ Clearly } , \lim_{x \to - 1^-} f\left( x \right) \neq \lim_{x \to - 1^+} f\left( x \right) at x = - 1\]
\[\text{ So,}  f\left( x \right) \text{ is discontinuous at } x = - 1 . \]
Similarly,  f(x) is discontinuous at = 1.

Case 4: Consider the point x = 0.
We have
\[\lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{1}{n} - h \right) = \lim_{h \to 0} f\left( \frac{1}{n} - h \right) = \left( \frac{1}{n - 1} \right)^2\]
\[\lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{1}{n} + h \right) = \lim_{h \to 0} f\left( \frac{1}{n} + h \right) = \left( \frac{1}{n} \right)^2\]
\[\lim_{x \to 0^+} f\left( x \right) \neq \lim_{x \to 0^-} f\left( x \right)\]
Thus,  
\[f\left( x \right)\] is discontinuous at  \[x = 0\] .
At = 0, we have
\[\lim_{x \to 0^-} f\left( x \right) \neq 0 = f\left( 0 \right)\]
So,  
\[f\left( x \right)\] is discontinuous at  \[x = 0\] .
Case 5: Consider the point 
\[\left| x \right| = \frac{1}{n}, n = 2, 3, 4, . . .\]
We have 
\[\lim_{x \to \frac{1}{n}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{1}{n} - h \right) = \lim_{h \to 0} f\left( \frac{1}{n} - h \right) = \left( \frac{1}{n - 1} \right)^2\]
\[\lim_{x \to \frac{1}{n}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{1}{n} + h \right) = \lim_{h \to 0} f\left( \frac{1}{n} + h \right) = \left( \frac{1}{n} \right)^2\]
\[\lim_{x \to \frac{1}{n}^+} f\left( x \right) \neq \lim_{x \to \frac{1}{n}^-} f\left( x \right)\]
Hence,  
\[f\left( x \right)\]  is discontinuous only at   \[x = \pm \frac{1}{n}\] ,
\[n \in Z - \left\{ 0 \right\} \text{ and } x = 0\] .
shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 9: Continuity - Exercise 9.4 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 9 Continuity
Exercise 9.4 | Q 17 | पृष्ठ ४४

व्हिडिओ ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्‍न

Discuss the continuity of the following function:

f (x) = sin x × cos x


Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):}  " at x ="  pi/2` 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`


Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}`  is a continuous function.


Show that the function defined by f (x) = cos (x2) is a continuous function.


Examine the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]

Also sketch the graph of this function.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


Discuss the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x}{\left| x \right|}, & x \neq 0 \\ 0 , & x = 0\end{array} . \right.\]

Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if }  x = 2\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


In the following, determine the value of constant involved in the definition so that the given function is continuou:   \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if }  - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]


The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.


Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x


If  \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\]  is continuous at x = 0, find k


If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.


 then f (x) is continuous for all
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\]  then f (x) is continuous for all

If  \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is


Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


If  \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at = 0, so that the function is continuous at x = 0, is

 


If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


The function f (x) = x − [x], where [⋅] denotes the greatest integer function is


The function f (x) = 1 + |cos x| is


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\] 

then at x = 0, f (x) is


The function f(x) = `"e"^|x|` is ______.


Let f(x) = |sin x|. Then ______.


`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.


If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:


If `f(x) = {{:(-x^2",", "when"  x ≤ 0),(5x - 4",", "when"  0 < x ≤ 1),(4x^2 - 3x",", "when"  1 < x < 2),(3x + 4",", "when"  x ≥ 2):}`, then


The function f(x) = x |x| is ______.


Discuss the continuity of the following function:

f(x) = sin x – cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×