हिंदी

The Function F ( X ) = ⎧ ⎪ ⎨ ⎪ ⎩ 1 , | X | ≥ 1 1 N 2 , 1 N < | X | < 1 N − 1 , N = 2 , 3 , . . . 0 , X = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

The function  \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\] 

विकल्प

  • is discontinuous at finitely many points

  • is continuous everywhere

  • is discontinuous only at  \[x = \pm \frac{1}{n}\]n ∈ Z − {0} and x = 0

  • none of these

MCQ

उत्तर

Given: 

\[f\left( x \right) = \begin{cases}1, \left| x \right| \geq 1 \\ \frac{1}{n^2}, \frac{1}{n} < \left| x \right| < \frac{1}{n - 1} \\ 0, x = 0\end{cases}\]
\[\Rightarrow f\left( x \right) = \begin{cases}1, - 1 \leq x \leq 1 \\ \frac{1}{n^2}, \frac{1}{n} < \left| x \right| < \frac{1}{n - 1} \\ 0, x = 0\end{cases}\]

Case 1:

\[\left| x \right| > 1 \text{ or } x < - 1 \text{ and } x > 1\]

Here, 

\[f\left( x \right) = 1\] , which is the constant function
So,
\[f\left( x \right)\]  is continuous for all

 \[\left| x \right| \geq 1 \text{ or } x \leq - 1 \text{ and } x \geq 1 .\]

Case 2:

\[\frac{1}{n} < \left| x \right| < \frac{1}{n - 1}, n = 2, 3, 4, . . .\]

Here,

\[f\left( x \right) = \frac{1}{n^2}, n = 2, 3, 4, . . .\], which is also a constant function.

So,

\[f\left( x \right)\]  is continuous for all
\[\frac{1}{n} < \left| x \right| < \frac{1}{n - 1}, n = 2, 3, 4, . . . .\]
Case 3: Consider the points x = -1 and x = 1.
We have
\[\left( LHL \text{ at } x = - 1 \right) = \lim_{x \to - 1^-} f\left( x \right) = \lim_{x \to - 1^-} 1 = 1\]
\[\left( RHL \text{ at } x = - 1 \right) = \lim_{x \to - 1^+} f\left( x \right) = \lim_{x \to - 1^+} \frac{1}{4} = \frac{1}{4} \left[ \because f\left( x \right) = \frac{1}{4} \text{ for  }- 1 < x < \frac{1}{2}, \text{ when } n = 2 \right]\]
\[\text{ Clearly } , \lim_{x \to - 1^-} f\left( x \right) \neq \lim_{x \to - 1^+} f\left( x \right) at x = - 1\]
\[\text{ So,}  f\left( x \right) \text{ is discontinuous at } x = - 1 . \]
Similarly,  f(x) is discontinuous at = 1.

Case 4: Consider the point x = 0.
We have
\[\lim_{x \to 0^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{1}{n} - h \right) = \lim_{h \to 0} f\left( \frac{1}{n} - h \right) = \left( \frac{1}{n - 1} \right)^2\]
\[\lim_{x \to 0^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{1}{n} + h \right) = \lim_{h \to 0} f\left( \frac{1}{n} + h \right) = \left( \frac{1}{n} \right)^2\]
\[\lim_{x \to 0^+} f\left( x \right) \neq \lim_{x \to 0^-} f\left( x \right)\]
Thus,  
\[f\left( x \right)\] is discontinuous at  \[x = 0\] .
At = 0, we have
\[\lim_{x \to 0^-} f\left( x \right) \neq 0 = f\left( 0 \right)\]
So,  
\[f\left( x \right)\] is discontinuous at  \[x = 0\] .
Case 5: Consider the point 
\[\left| x \right| = \frac{1}{n}, n = 2, 3, 4, . . .\]
We have 
\[\lim_{x \to \frac{1}{n}^-} f\left( x \right) = \lim_{h \to 0} f\left( \frac{1}{n} - h \right) = \lim_{h \to 0} f\left( \frac{1}{n} - h \right) = \left( \frac{1}{n - 1} \right)^2\]
\[\lim_{x \to \frac{1}{n}^+} f\left( x \right) = \lim_{h \to 0} f\left( \frac{1}{n} + h \right) = \lim_{h \to 0} f\left( \frac{1}{n} + h \right) = \left( \frac{1}{n} \right)^2\]
\[\lim_{x \to \frac{1}{n}^+} f\left( x \right) \neq \lim_{x \to \frac{1}{n}^-} f\left( x \right)\]
Hence,  
\[f\left( x \right)\]  is discontinuous only at   \[x = \pm \frac{1}{n}\] ,
\[n \in Z - \left\{ 0 \right\} \text{ and } x = 0\] .
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 9: Continuity - Exercise 9.4 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 9 Continuity
Exercise 9.4 | Q 17 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x  > 3):}` is continuous at x = 3.


For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x),  "," if x <= 0),(4x+ 1, "," if x > 0):}`  continuous at x = 0? What about continuity at x = 1?


Discuss the continuity of the following function:

f (x) = sin x × cos x


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):}  " at x ="  pi/2` 


Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}`  is a continuous function.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if }  x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}x^3 - x^2 + 2x - 2, & \text{ if }x \neq 1 \\ 4 , & \text{ if } x = 1\end{cases}\]

 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}k( x^2 + 3x), & \text{ if }  x < 0 \\ \cos 2x , & \text{ if }  x \geq 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}2 , & \text{ if }  x \leq 3 \\ ax + b, & \text{ if }  3 < x < 5 \\ 9 , & \text{ if }  x \geq 5\end{cases}\]


The function  \[f\left( x \right) = \begin{cases}x^2 /a , & \text{ if } 0 \leq x < 1 \\ a , & \text{ if } 1 \leq x < \sqrt{2} \\ \frac{2 b^2 - 4b}{x^2}, & \text{ if }  \sqrt{2} \leq x < \infty\end{cases}\] is continuous on (0, ∞), then find the most suitable values of a and b.


Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.


If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


 then f (x) is continuous for all
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\]  then f (x) is continuous for all

If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


Let  \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when

 

 


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


If  \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of

\[\lim_{x \to 4} \frac{f\left( x \right) - f\left( 4 \right)}{x - 4} .\]

The function f (x) = 1 + |cos x| is


Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\] 

then at x = 0, f (x) is


If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.


Let f(x) = |sin x|. Then ______.


`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.


The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2


The function f(x) = x |x| is ______.


Discuss the continuity of the following function:

f(x) = sin x – cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×