हिंदी

Let f(x) = |sin x|. Then ______. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f(x) = |sin x|. Then ______.

विकल्प

  • f is everywhere differentiable

  • f is everywhere continuous but not differentiable at x = nπ, n ∈ Z

  • f is everywhere continuous but not differentiable at x = `(2"n" + 1)  pi/2`, n ∈ Z

  • None of these

MCQ
रिक्त स्थान भरें

उत्तर

Let f(x) = |sin x|. Then f is everywhere continuous but not differentiable at x = nπ, n ∈ Z.

Explanation:

Given that: f(x) = |sin x|

Let g(x) = sin x and t(x) = |x|

∴ f(x) = tog(x) = t[g(x)] = t(sin x) = |sin x|

Where g(x) and t(x) both are continuous.

∴ f(x) = got(x) is continuous but t(x) is not differentiable at x = 0.

So, f(x) is not continuous at sin x = 0

⇒ x = nπ, n ∈ Z.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 5: Continuity And Differentiability - Exercise [पृष्ठ ११४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 5 Continuity And Differentiability
Exercise | Q 90 | पृष्ठ ११४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):}  " at x ="  pi/2` 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`


Examine the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]

Also sketch the graph of this function.


Let  \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.

 


If  \[f\left( x \right) = \begin{cases}\frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0 \\ k , & x = 0\end{cases}\]   is continuous at x = 0, find k.


Extend the definition of the following by continuity 

\[f\left( x \right) = \frac{1 - \cos7 (x - \pi)}{5 (x - \pi )^2}\]  at the point x = π.

In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if }  & x = 0\end{cases}\] at x = 0


If  \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if }  x \geq 0 \\ - 2 x^2 + k, & \text{ if }  x < 0\end{cases}\]  then what should be the value of k so that f(x) is continuous at x = 0.

 


Discuss the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}\frac{x}{\left| x \right|}, & x \neq 0 \\ 0 , & x = 0\end{array} . \right.\]

Discuss the continuity of f(x) = sin | x |.


What happens to a function f (x) at x = a, if  

\[\lim_{x \to a}\] f (x) = f (a)?

If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


If  \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is


If  \[f\left( x \right) = \frac{1 - \sin x}{\left( \pi - 2x \right)^2},\] when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =


The function 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & x \neq 0 \\ \frac{k}{2} , & x = 0\end{cases}\]  is continuous at x = 0, then k =

If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


The function f (x) = |cos x| is


The function f (x) = x − [x], where [⋅] denotes the greatest integer function is


The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is


`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.


Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.


The point(s), at which the function f given by f(x) = `{("x"/|"x"|","  "x" < 0),(-1","  "x" ≥ 0):}` is continuous, is/are:


The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be


If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:


Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0


The function f(x) = x2 – sin x + 5 is continuous at x =


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx + 1",", if x ≤ pi),(cos x",", if x > pi):}` at = `pi`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×