Advertisements
Advertisements
प्रश्न
The function f (x) = |cos x| is
विकल्प
everywhere continuous and differentiable
everywhere continuous but not differentiable at (2n + 1) π/2, n ∈ Z
neither continuous nor differentiable at (2n + 1) π/2, n ∈ Z
none of these
उत्तर
We have,
\[f\left( x \right) = \left| \cos x \right|\]
`⇒ f(x) ={(cosx , 2npile x < (4n +1)_2^pi),(0, x= (4n +1)_2^pi),(-cos x, (4n +1)_2^pi < x< (4n +3)^_2^pi),(0,x = (4n + 3)_2^pi),(cos x, (4n +3)_2^pi < x le (2n +2)pi):}`
\[\text { When, x is in first quadrant, i . e . 2n}\pi \leq x < \left( 4n + 1 \right)\frac{\pi}{2} , \text { we have} \]
\[ f\left( x \right) = \text { cos x which being a trigonometrical function is continuous and differentiable in} \left( 2n\pi, \left( 4n + 1 \right)\frac{\pi}{2} \right)\]
\[\text { When, x is in second quadrant or in third quadrant, i . e }. , \left( 4n + 1 \right)\frac{\pi}{2} < x < \left( 4n + 3 \right)\frac{\pi}{2} , we have\]
\[ f\left( x \right) = - \text { cos x which being a trigonometrical function is continuous and differentiable in } \left( \left( 4n + 1 \right)\frac{\pi}{2}, \left( 4n + 3 \right)\frac{\pi}{2} \right)\]
\[\text { When, x is in fourth quadrant, i . e} . , \left( 4n + 3 \right)\frac{\pi}{2} < x \leq \left( 2n + 2 \right)\pi ,\text { we have }\]
\[ f\left( x \right) =\text{cos x which being a trigonometrical function is continuous and differentiable in } \left( \left( 4n + 3 \right)\frac{\pi}{2}, \left( 2n + 2 \right)\pi \right)\]
\[\text { Thus possible point of non - differentiability of } f\left( x \right)\text { are x} = \left( 4n + 1 \right)\frac{\pi}{2}, \left( 4n + 3 \right)\frac{\pi}{2}\]
\[\text { Now, LHD } \left[ \text { at x }= \left( 4n + 1 \right)\frac{\pi}{2} \right] = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{f\left( x \right) - f\left( \left( 4n + 1 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{\cos x - 0}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{- \sin x}{1 - 0} \left[\text { By L'Hospital rule } \right]\]
\[ = - 1\]
\[\text { And RHD } \left( \text { at x } = \left( 4n + 1 \right)\frac{\pi}{2} \right) = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} \frac{f\left( x \right) - f\left( \left( 4n + 1 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} \frac{- \cos x - 0}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} \frac{\sin x}{1 - 0} \left[ \text { By L'Hospital rule} \right]\]
\[ = 1\
\[ \therefore \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} f\left( x \right) \neq \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} f\left( x \right)\]
\[\text { So }f\left( x \right)\text { is not differentiable at x }= \left( 4n + 1 \right)\frac{\pi}{2}\]
\[\text { Now, LHD} \left[\text { at x } = \left( 4n + 3 \right)\frac{\pi}{2} \right] = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{f\left( x \right) - f\left( \left( 4n + 3 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^-} \frac{- \cos x - 0}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^-} \frac{\sin x}{1 - 0} \left[\text { By L'Hospital rule }\right]\]
\[ = 1\]
\[\text { And RHD } \left( \text { at x } = \left( 4n + 3 \right)\frac{\pi}{2} \right) = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} \frac{f\left( x \right) - f\left( \left( 4n + 3 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} \frac{\cos x - 0}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} \frac{- \sin x}{1 - 0} \left[\text { By L'Hospital rule} \right]\]
\[ = - 1\
\[ \therefore \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^-} f\left( x \right) \neq \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} f\left( x \right)\]
\[\text { So} f\left( x \right) \text { is not differentiable at x} = \left( 4n + 3 \right)\frac{\pi}{2}\]
\[\text { Therefore} , f\left( x \right)\text { is neither differentiable at }\left( 4n + 1 \right)\frac{\pi}{2} \text { nor at } \left( 4n + 3 \right)\frac{\pi}{2}\]
\[\text { i . e } . f\left( x \right) \text { is not differentiable at odd multiples of } \frac{\pi}{2}\]
\[\text { i . e .} f\left( x \right) \text { is not differentiable at x }= \left( 2n + 1 \right)\frac{\pi}{2}\]
\[\text { Therefore, f(x) is everywhere continuous but not differentiable at } \left( 2n + 1 \right)\frac{\pi}{2} .\]
APPEARS IN
संबंधित प्रश्न
If f (x) is continuous on [–4, 2] defined as
f (x) = 6b – 3ax, for -4 ≤ x < –2
= 4x + 1, for –2 ≤ x ≤ 2
Show that a + b =`-7/6`
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`
Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}` is a continuous function.
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]
Find the values of a so that the function
Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]
Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if } x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.
Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\] is everywhere continuous.
Find the points of discontinuity, if any, of the following functions:
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}2 , & \text{ if } x \leq 3 \\ ax + b, & \text{ if } 3 < x < 5 \\ 9 , & \text{ if } x \geq 5\end{cases}\]
The function f(x) is defined as follows:
If f is continuous on [0, 8], find the values of a and b.
If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then write the value of k.
If the function \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).
If \[f\left( x \right) = \binom{\frac{1 - \cos x}{x^2}, x \neq 0}{k, x = 0}\] is continuous at x = 0, find k.
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =
The function \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\]
If \[f\left( x \right) = \frac{1 - \sin x}{\left( \pi - 2x \right)^2},\] when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =
If the function \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is
If \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at x = 0, so that the function is continuous at x = 0, is
The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is
Find the values of a and b, if the function f defined by
If f is defined by \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\]
If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\]
The function f (x) = x − [x], where [⋅] denotes the greatest integer function is
Let f (x) = |cos x|. Then,
The function f (x) = 1 + |cos x| is
The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\]
then at x = 0, f (x) is
If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.
The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.
Let f(x) = |sin x|. Then ______.
The point(s), at which the function f given by f(x) = `{("x"/|"x"|"," "x" < 0),(-1"," "x" ≥ 0):}` is continuous, is/are:
The function f(x) = x |x| is ______.