Advertisements
Advertisements
प्रश्न
If the function \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is
विकल्प
2
\[\frac{1}{3}\]
\[- \frac{1}{3}\]
\[\frac{2}{3}\]
उत्तर
\[\frac{1}{3}\]
If f(x) is continuous at x = 0, then
\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{x \to 0} \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x} = f\left( 0 \right)\]
\[ \Rightarrow \lim_{x \to 0} \frac{x\left( 2 - \frac{\sin^{- 1} x}{x} \right)}{x\left( 2 + \frac{\tan^{- 1} x}{x} \right)} = f\left( 0 \right)\]
\[ \Rightarrow \lim_{x \to 0} \frac{\left( 2 - \frac{\sin^{- 1} x}{x} \right)}{\left( 2 + \frac{\tan^{- 1} x}{x} \right)} = f\left( 0 \right)\]
\[ \Rightarrow \frac{2 - \lim_{x \to 0} \left( \frac{\sin^{- 1} x}{x} \right)}{2 + \lim_{x \to 0} \left( \frac{\tan^{- 1} x}{x} \right)} = f\left( 0 \right)\]
\[ \Rightarrow \frac{2 - 1}{2 + 1} = f\left( 0 \right)\]
\[ \Rightarrow f\left( 0 \right) = \frac{1}{3}\]
APPEARS IN
संबंधित प्रश्न
A function f (x) is defined as
f (x) = x + a, x < 0
= x, 0 ≤x ≤ 1
= b- x, x ≥1
is continuous in its domain.
Find a + b.
Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at x " = pi`
Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}` is a continuous function.
Show that the function defined by f (x) = cos (x2) is a continuous function.
Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]
Let \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.
Extend the definition of the following by continuity
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if } & x = 0\end{cases}\] at x = 0
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if } x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if } x = 0\end{cases}\]
Show that the function g (x) = x − [x] is discontinuous at all integral points. Here [x] denotes the greatest integer function.
Show that f (x) = cos x2 is a continuous function.
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\] then f (x) is continuous for all
The function
Let \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\] The value which should be assigned to f (x) at \[x = \frac{\pi}{4},\]so that it is continuous everywhere is
If \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at x = 0, so that the function is continuous at x = 0, is
Find the values of a and b so that the function
Find the values of a and b, if the function f defined by
If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\] then f (x) is
The function f (x) = |cos x| is
Let f (x) = |cos x|. Then,
The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is
Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if
Let f(x) = |sin x|. Then ______.
`lim_("x"-> pi) (1 + "cos"^2 "x")/("x" - pi)^2` is equal to ____________.
`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.
Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.
Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0
The function f(x) = x2 – sin x + 5 is continuous at x =
The function f(x) = x |x| is ______.
Discuss the continuity of the following function:
f(x) = sin x + cos x