Advertisements
Advertisements
Question
If the function \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is
Options
2
\[\frac{1}{3}\]
\[- \frac{1}{3}\]
\[\frac{2}{3}\]
Solution
\[\frac{1}{3}\]
If f(x) is continuous at x = 0, then
\[\lim_{x \to 0} f\left( x \right) = f\left( 0 \right)\]
\[ \Rightarrow \lim_{x \to 0} \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x} = f\left( 0 \right)\]
\[ \Rightarrow \lim_{x \to 0} \frac{x\left( 2 - \frac{\sin^{- 1} x}{x} \right)}{x\left( 2 + \frac{\tan^{- 1} x}{x} \right)} = f\left( 0 \right)\]
\[ \Rightarrow \lim_{x \to 0} \frac{\left( 2 - \frac{\sin^{- 1} x}{x} \right)}{\left( 2 + \frac{\tan^{- 1} x}{x} \right)} = f\left( 0 \right)\]
\[ \Rightarrow \frac{2 - \lim_{x \to 0} \left( \frac{\sin^{- 1} x}{x} \right)}{2 + \lim_{x \to 0} \left( \frac{\tan^{- 1} x}{x} \right)} = f\left( 0 \right)\]
\[ \Rightarrow \frac{2 - 1}{2 + 1} = f\left( 0 \right)\]
\[ \Rightarrow f\left( 0 \right) = \frac{1}{3}\]
APPEARS IN
RELATED QUESTIONS
For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x), "," if x <= 0),(4x+ 1, "," if x > 0):}` continuous at x = 0? What about continuity at x = 1?
Is the function defined by `f(x) = x^2 - sin x + 5` continuous at x = π?
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at x " = pi`
Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}` is a continuous function.
Show that the function defined by f (x) = cos (x2) is a continuous function.
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]
Find the value of k if f(x) is continuous at x = π/2, where \[f\left( x \right) = \begin{cases}\frac{k \cos x}{\pi - 2x}, & x \neq \pi/2 \\ 3 , & x = \pi/2\end{cases}\]
If \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin } x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1
If \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if } x \geq 0 \\ - 2 x^2 + k, & \text{ if } x < 0\end{cases}\] then what should be the value of k so that f(x) is continuous at x = 0.
Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\] is everywhere continuous.
Discuss the continuity of the function
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{x^4 - 16}{x - 2}, & \text{ if } x \neq 2 \\ 16 , & \text{ if } x = 2\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if } x \neq 0 \\ 3k , & \text{ if } x = 0\end{cases}\]
Show that f (x) = cos x2 is a continuous function.
Show that f (x) = | cos x | is a continuous function.
Determine whether \[f\left( x \right) = \binom{\frac{\sin x^2}{x}, x \neq 0}{0, x = 0}\] is continuous at x = 0 or not.
If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.
Determine the value of the constant 'k' so that function f
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =
Let \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}, x \neq \frac{\pi}{4} .\] The value which should be assigned to f (x) at \[x = \frac{\pi}{4},\]so that it is continuous everywhere is
If the function f (x) defined by \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =
If \[f\left( x \right) = x \sin\frac{1}{x}, x \neq 0,\]then the value of the function at x = 0, so that the function is continuous at x = 0, is
Find the values of a and b so that the function
If \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of
The function f (x) = |cos x| is
The function f (x) = x − [x], where [⋅] denotes the greatest integer function is
Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if
The function f(x) = `(4 - x^2)/(4x - x^3)` is ______.
`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.
The function f(x) = 5x – 3 is continuous at x =
What is the values of' 'k' so that the function 'f' is continuous at the indicated point
The value of ‘k’ for which the function f(x) = `{{:((1 - cos4x)/(8x^2)",", if x ≠ 0),(k",", if x = 0):}` is continuous at x = 0 is ______.