English

If F ( X ) = ⎧ ⎨ ⎩ 1 − Sin X ( π − 2 X ) 2 . Log Sin X Log ( 1 + π 2 − 4 π X + 4 X 2 ) , X ≠ π 2 K , X = π 2 is Continuous at X = π/2, Then K = - Mathematics

Advertisements
Advertisements

Question

If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =

 

Options

  • \[- \frac{1}{16}\] 

  • \[- \frac{1}{32}\] 

  • \[- \frac{1}{64}\] 

  • \[- \frac{1}{28}\]

MCQ

Solution

\[\frac{- 1}{64}\]

If \[f\left( x \right)\]  is continuous at  \[x = \frac{\pi}{2}\] ,then 

\[\lim_{x \to \frac{\pi}{2}} f\left( x \right) = f\left( \frac{\pi}{2} \right)\]

\[\text{ If }\frac{\pi}{2} - x = t, \text{ then} \]

\[ \Rightarrow \lim_{t \to 0} f\left( \frac{\pi}{2} - t \right) = f\left( \frac{\pi}{2} \right)\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{1 - \sin \left( \frac{\pi}{2} - t \right)}{4 t^2} \times \frac{\log \sin \left( \frac{\pi}{2} - t \right)}{\log\left( 1 + \pi^2 - 4\pi\left( \frac{\pi}{2} - t \right) + 4 \left( \frac{\pi}{2} - t \right)^2 \right)} \right) = k\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{\left( 1 - \cos t \right)}{4 t^2} \times \frac{\log \cos t}{\log\left( 1 + \pi^2 - 2 \pi^2 + 4\pi t + 4\left( \frac{\pi^2}{4} + t^2 - \pi t \right) \right)} \right) = k\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{\left( 1 - \cos t \right)}{4 t^2} \times \frac{\log \cos t}{\log\left( 1 - \pi^2 + 4\pi t + \left( \pi^2 + 4 t^2 - 4\pi t \right) \right)} \right) = k\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{\left( 1 - \cos t \right)}{4 t^2} \times \frac{\log \cos t}{\log \left( 1 + 4 t^2 \right)} \right) = k\]

\[ \Rightarrow \lim_{t \to 0} \left( \frac{2 \sin^2 \frac{t}{2}}{16 \times \frac{t^2}{4}} \times \frac{\log \cos t}{\log \left( 1 + 4 t^2 \right)} \right) = k\]

\[ \Rightarrow \frac{2}{16} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t^2}{4} \right)} \times \frac{\log \cos t}{\left( \frac{4 t^2 \log \left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[\]

\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log \cos t}{4 t^2} \right)}{\left( \frac{\log \left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log \sqrt{1 - \sin^2 t}}{4 t^2} \right)}{\left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{8} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log\left( 1 - \sin^2 t \right)}{\left( 8 t^2 \right)} \right)}{\left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{64} \lim_{t \to 0} \left( \frac{\sin^2 \frac{t}{2}}{\left( \frac{t}{2} \right)^2} \times \frac{\left( \frac{\log\left( 1 - \sin^2 t \right)}{t^2} \right)}{\left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{64}\left( \lim_{t \to 0} \left( \frac{\sin\frac{t}{2}}{\left( \frac{t}{2} \right)} \right)^2 \times \frac{\lim_{t \to 0} \left( \frac{\log\left( 1 - \sin^2 t \right)}{t^2} \right)}{\lim_{t \to 0} \left( \frac{\log\left( 1 + 4 t^2 \right)}{4 t^2} \right)} \right) = k\]

\[ \Rightarrow \frac{1}{64}\left( 1 \times \lim_{t \to 0} \frac{\left( - \sin^2 t \right) \log \left( 1 - \sin^2 t \right)}{t^2 \left( - \sin^2 t \right)} \right) = k\]

\[ \Rightarrow \frac{- 1}{64}\left( \lim_{t \to 0} \frac{\left( \sin^2 t \right) \log \left( 1 - \sin^2 t \right)}{t^2 \left( - \sin^2 t \right)} \right) = k\]

\[ \Rightarrow \frac{- 1}{64}\left( \lim_{t \to 0} \left( \frac{\sin t}{t} \right)^2 \lim_{t \to 0} \frac{\log \left( 1 - \sin^2 t \right)}{\left( - \sin^2 t \right)} \right) = k\]

\[\]

\[ \Rightarrow \frac{- 1}{64}\left( \lim_{t \to 0} \left( \frac{\sin t}{t} \right)^2 \lim_{t \to 0} \frac{\log\left( 1 - \sin^2 t \right)}{\left( - \sin^2 t \right)} \right) = k\]

\[ \Rightarrow k = \frac{- 1}{64} \left[ \because \lim_{x \to 0} \frac{\log\left( 1 - x \right)}{x} = 1 \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 9: Continuity - Exercise 9.4 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 9 Continuity
Exercise 9.4 | Q 6 | Page 43

RELATED QUESTIONS

A function f (x) is defined as
f (x) = x + a, x < 0
= x,       0 ≤x ≤ 1
= b- x,   x ≥1
is continuous in its domain.
Find a + b.


For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x),  "," if x <= 0),(4x+ 1, "," if x > 0):}`  continuous at x = 0? What about continuity at x = 1?


Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Discuss the continuity of the cosine, cosecant, secant and cotangent functions,


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx^2, "," if x<= 2),(3, "," if x > 2):} " at x" = 2`


Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}`  is a continuous function.


Determine the value of the constant k so that the function

\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]

 


Let  \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.

 


If  \[f\left( x \right) = \begin{cases}\frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0 \\ k , & x = 0\end{cases}\]   is continuous at x = 0, find k.


In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}(x - 1)\tan\frac{\pi  x}{2}, \text{ if } & x \neq 1 \\ k , if & x = 1\end{cases}\] at x = 1at x = 1


If  \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if }  x \geq 0 \\ - 2 x^2 + k, & \text{ if }  x < 0\end{cases}\]  then what should be the value of k so that f(x) is continuous at x = 0.

 


Prove that the function \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & x < 0 \\ x + 1, & x \geq 0\end{cases}\]  is everywhere continuous.

 


Find the points of discontinuity, if any, of the following functions:  \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if }  x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, & \text{ if }  x \neq 0 \\ 3k , & \text{ if  } x = 0\end{cases}\] 


In the following, determine the value of constant involved in the definition so that the given function is continuou:  \[f\left( x \right) = \begin{cases}2 , & \text{ if }  x \leq 3 \\ ax + b, & \text{ if }  3 < x < 5 \\ 9 , & \text{ if }  x \geq 5\end{cases}\]


The function f(x) is defined as follows: 

\[f\left( x \right) = \begin{cases}x^2 + ax + b , & 0 \leq x < 2 \\ 3x + 2 , & 2 \leq x \leq 4 \\ 2ax + 5b , & 4 < x \leq 8\end{cases}\]

If f is continuous on [0, 8], find the values of a and b.


If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]

for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].


Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x


Show that f (x) = cos x2 is a continuous function.


What happens to a function f (x) at x = a, if  

\[\lim_{x \to a}\] f (x) = f (a)?

If \[f\left( x \right) = \begin{cases}\frac{x}{\sin 3x}, & x \neq 0 \\ k , & x = 0\end{cases}\]  is continuous at x = 0, then write the value of k.


If the function   \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).

 


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

 then f (x) is continuous for all
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\]  then f (x) is continuous for all

If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


The value of f (0), so that the function

\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by 


If  \[f\left( x \right) = \frac{1 - \sin x}{\left( \pi - 2x \right)^2},\] when x ≠ π/2 and f (π/2) = λ, then f (x) will be continuous function at x= π/2, where λ =


If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is 


The value of a for which the function \[f\left( x \right) = \begin{cases}5x - 4 , & \text{ if } 0 < x \leq 1 \\ 4 x^2 + 3ax, & \text{ if } 1 < x < 2\end{cases}\] is continuous at every point of its domain, is 


If is defined by  \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\] 


If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\] 


If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.


`lim_("x"-> pi) (1 + "cos"^2 "x")/("x" - pi)^2` is equal to ____________.


The function f(x) = 5x – 3 is continuous at x =


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×