Advertisements
Advertisements
Question
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
Options
0
1/e
e
none of these
Solution 1
Suppose
\[\log f\left( x \right) = \left( \cot x \right) \left( \log \left( x + 1 \right) \right) \left[ \text{ Taking log on both sides } \right]\]
\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \lim_{x \to 0} \left( \cot x \right) \left( \log \left( x + 1 \right) \right)\]
\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \lim_{x \to 0} \left( \frac{\log \left( x + 1 \right)}{\tan x} \right)\]
\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \lim_{x \to 0} \frac{\left( \frac{\log \left( x + 1 \right)}{x} \right)}{\left( \frac{\tan x}{x} \right)}\]
\[ \Rightarrow \lim_{x \to 0} \log f\left( x \right) = \frac{\lim_{x \to 0} \left( \frac{\log \left( x + 1 \right)}{x} \right)}{\lim_{x \to 0} \left( \frac{\tan x}{x} \right)}\]
\[ \Rightarrow \log \left( \lim_{x \to 0} f\left( x \right) \right) = \frac{\lim_{x \to 0} \left( \frac{\log \left( x + 1 \right)}{x} \right)}{\lim_{x \to 0} \left( \frac{\tan x}{x} \right)} \left[ \because f\left( x \right)\text{ is continuous at } x = 0 \right]\]
\[ \Rightarrow \log \left( \lim_{x \to 0} f\left( x \right) \right) = 1\]
\[ \Rightarrow \lim_{x \to 0} f\left( x \right) = e\]
\[ \Rightarrow f\left( 0 \right) = e \left[ \because f\left( x \right) \text{ is continuous at } x = 0 \right]\]
Solution 2
For continuity at x = 0, we must have
f(0) = `lim_("x"->0) "f"("x")`
`=lim_(x->0) ("x" + 1)^"cot x" = lim_(x->0) [(1 + "x")^(1/"x")]^("x cot x")`
`= lim_("x"->0)[(1 + "x")^(1/"x")]^(lim_("x"->0)("x"/("tan x"))) = "e"^1 = e`
APPEARS IN
RELATED QUESTIONS
For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x), "," if x <= 0),(4x+ 1, "," if x > 0):}` continuous at x = 0? What about continuity at x = 1?
Discuss the continuity of the following function:
f (x) = sin x × cos x
Discuss the continuity of the cosine, cosecant, secant and cotangent functions,
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {((kcosx)/(pi-2x), "," if x != pi/2),(3, "," if x = pi/2):} " at x =" pi/2`
Extend the definition of the following by continuity
If \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin } x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).
If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if } } 1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if } x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}k( x^2 + 3x), & \text{ if } x < 0 \\ \cos 2x , & \text{ if } x \geq 0\end{cases}\]
If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =
If \[f\left( x \right) = \begin{cases}\frac{\log\left( 1 + ax \right) - \log\left( 1 - bx \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] and f (x) is continuous at x = 0, then the value of k is
Let \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when
The function \[f\left( x \right) = \begin{cases}1 , & \left| x \right| \geq 1 & \\ \frac{1}{n^2} , & \frac{1}{n} < \left| x \right| & < \frac{1}{n - 1}, n = 2, 3, . . . \\ 0 , & x = 0 &\end{cases}\]
The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is
The function
The function f (x) = |cos x| is
The function f (x) = x − [x], where [⋅] denotes the greatest integer function is
Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.
If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:
A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to
If `f(x) = {{:(-x^2",", "when" x ≤ 0),(5x - 4",", "when" 0 < x ≤ 1),(4x^2 - 3x",", "when" 1 < x < 2),(3x + 4",", "when" x ≥ 2):}`, then
Let f(x) = `{{:(5^(1/x), x < 0),(lambda[x], x ≥ 0):}` and λ ∈ R, then at x = 0
The function f(x) = x2 – sin x + 5 is continuous at x =
Find the values of `a` and ` b` such that the function by:
`f(x) = {{:(5",", if x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`
is a continuous function.
The value of ‘k’ for which the function f(x) = `{{:((1 - cos4x)/(8x^2)",", if x ≠ 0),(k",", if x = 0):}` is continuous at x = 0 is ______.
The function f(x) = x |x| is ______.
Discuss the continuity of the following function:
f(x) = sin x + cos x