Advertisements
Advertisements
Question
The function f (x) = |cos x| is
Options
everywhere continuous and differentiable
everywhere continuous but not differentiable at (2n + 1) π/2, n ∈ Z
neither continuous nor differentiable at (2n + 1) π/2, n ∈ Z
none of these
Solution
We have,
\[f\left( x \right) = \left| \cos x \right|\]
`⇒ f(x) ={(cosx , 2npile x < (4n +1)_2^pi),(0, x= (4n +1)_2^pi),(-cos x, (4n +1)_2^pi < x< (4n +3)^_2^pi),(0,x = (4n + 3)_2^pi),(cos x, (4n +3)_2^pi < x le (2n +2)pi):}`
\[\text { When, x is in first quadrant, i . e . 2n}\pi \leq x < \left( 4n + 1 \right)\frac{\pi}{2} , \text { we have} \]
\[ f\left( x \right) = \text { cos x which being a trigonometrical function is continuous and differentiable in} \left( 2n\pi, \left( 4n + 1 \right)\frac{\pi}{2} \right)\]
\[\text { When, x is in second quadrant or in third quadrant, i . e }. , \left( 4n + 1 \right)\frac{\pi}{2} < x < \left( 4n + 3 \right)\frac{\pi}{2} , we have\]
\[ f\left( x \right) = - \text { cos x which being a trigonometrical function is continuous and differentiable in } \left( \left( 4n + 1 \right)\frac{\pi}{2}, \left( 4n + 3 \right)\frac{\pi}{2} \right)\]
\[\text { When, x is in fourth quadrant, i . e} . , \left( 4n + 3 \right)\frac{\pi}{2} < x \leq \left( 2n + 2 \right)\pi ,\text { we have }\]
\[ f\left( x \right) =\text{cos x which being a trigonometrical function is continuous and differentiable in } \left( \left( 4n + 3 \right)\frac{\pi}{2}, \left( 2n + 2 \right)\pi \right)\]
\[\text { Thus possible point of non - differentiability of } f\left( x \right)\text { are x} = \left( 4n + 1 \right)\frac{\pi}{2}, \left( 4n + 3 \right)\frac{\pi}{2}\]
\[\text { Now, LHD } \left[ \text { at x }= \left( 4n + 1 \right)\frac{\pi}{2} \right] = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{f\left( x \right) - f\left( \left( 4n + 1 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{\cos x - 0}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{- \sin x}{1 - 0} \left[\text { By L'Hospital rule } \right]\]
\[ = - 1\]
\[\text { And RHD } \left( \text { at x } = \left( 4n + 1 \right)\frac{\pi}{2} \right) = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} \frac{f\left( x \right) - f\left( \left( 4n + 1 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} \frac{- \cos x - 0}{x - \left( 4n + 1 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} \frac{\sin x}{1 - 0} \left[ \text { By L'Hospital rule} \right]\]
\[ = 1\
\[ \therefore \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} f\left( x \right) \neq \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^+} f\left( x \right)\]
\[\text { So }f\left( x \right)\text { is not differentiable at x }= \left( 4n + 1 \right)\frac{\pi}{2}\]
\[\text { Now, LHD} \left[\text { at x } = \left( 4n + 3 \right)\frac{\pi}{2} \right] = \lim_{x \to \left( 4n + 1 \right) \frac{\pi}{2}^-} \frac{f\left( x \right) - f\left( \left( 4n + 3 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^-} \frac{- \cos x - 0}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^-} \frac{\sin x}{1 - 0} \left[\text { By L'Hospital rule }\right]\]
\[ = 1\]
\[\text { And RHD } \left( \text { at x } = \left( 4n + 3 \right)\frac{\pi}{2} \right) = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} \frac{f\left( x \right) - f\left( \left( 4n + 3 \right)\frac{\pi}{2} \right)}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} \frac{\cos x - 0}{x - \left( 4n + 3 \right)\frac{\pi}{2}}\]
\[ = \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} \frac{- \sin x}{1 - 0} \left[\text { By L'Hospital rule} \right]\]
\[ = - 1\
\[ \therefore \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^-} f\left( x \right) \neq \lim_{x \to \left( 4n + 3 \right) \frac{\pi}{2}^+} f\left( x \right)\]
\[\text { So} f\left( x \right) \text { is not differentiable at x} = \left( 4n + 3 \right)\frac{\pi}{2}\]
\[\text { Therefore} , f\left( x \right)\text { is neither differentiable at }\left( 4n + 1 \right)\frac{\pi}{2} \text { nor at } \left( 4n + 3 \right)\frac{\pi}{2}\]
\[\text { i . e } . f\left( x \right) \text { is not differentiable at odd multiples of } \frac{\pi}{2}\]
\[\text { i . e .} f\left( x \right) \text { is not differentiable at x }= \left( 2n + 1 \right)\frac{\pi}{2}\]
\[\text { Therefore, f(x) is everywhere continuous but not differentiable at } \left( 2n + 1 \right)\frac{\pi}{2} .\]
APPEARS IN
RELATED QUESTIONS
For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x), "," if x <= 0),(4x+ 1, "," if x > 0):}` continuous at x = 0? What about continuity at x = 1?
Is the function defined by `f(x) = x^2 - sin x + 5` continuous at x = π?
Discuss the continuity of the following function:
f (x) = sin x × cos x
Show that the function defined by f (x) = cos (x2) is a continuous function.
Show that the function defined by f(x) = |cos x| is a continuous function.
Examine sin |x| is a continuous function.
Examine the continuity of the function
\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]
Also sketch the graph of this function.
Let \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.
Extend the definition of the following by continuity
If \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin } x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x} + \cos x, & \text{ if } x \neq 0 \\ 5 , & \text { if } x = 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}4 , & \text{ if } x \leq - 1 \\ a x^2 + b, & \text{ if } - 1 < x < 0 \\ \cos x, &\text{ if }x \geq 0\end{cases}\]
The function f(x) is defined as follows:
If f is continuous on [0, 8], find the values of a and b.
What happens to a function f (x) at x = a, if
Determine the value of the constant 'k' so that function f
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by
If the function \[f\left( x \right) = \frac{2x - \sin^{- 1} x}{2x + \tan^{- 1} x}\] is continuous at each point of its domain, then the value of f (0) is
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos 10x}{x^2} , & x < 0 \\ a , & x = 0 \\ \frac{\sqrt{x}}{\sqrt{625 + \sqrt{x}} - 25}, & x > 0\end{cases}\] then the value of a so that f (x) may be continuous at x = 0, is
If f is defined by \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\]
If \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of
If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\] then f (x) is
Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if
If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.
The function f(x) = `"e"^|x|` is ______.
If f.g is continuous at x = a, then f and g are separately continuous at x = a.
`lim_("x" -> 0) ("x cos x" - "log" (1 + "x"))/"x"^2` is equal to ____________.
Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.
If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:
A real value of x satisfies `((3 - 4ix)/(3 + 4ix))` = α – iβ (α, β ∈ R), if α2 + β2 is equal to
If `f(x) = {{:(-x^2",", "when" x ≤ 0),(5x - 4",", "when" 0 < x ≤ 1),(4x^2 - 3x",", "when" 1 < x < 2),(3x + 4",", "when" x ≥ 2):}`, then
The function f(x) = x2 – sin x + 5 is continuous at x =
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2
Find the values of `a` and ` b` such that the function by:
`f(x) = {{:(5",", if x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`
is a continuous function.