Advertisements
Advertisements
Question
If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\] then f (x) is
Options
continuous at x = − 2
not continuous at x = − 2
differentiable at x = − 2
continuous but not derivable at x = − 2
Solution
(b) not continuous at x = − 2
Given:
⇒ `f(x) = {((-|x+2|)/(tan^(-1)(x+2)), x< -2),((|x+2|)/(tan^(-1)(x+2)), x> -2),(2, x = -2):}`
Continuity at x = − 2.
(LHL at x= − 2) =
\[\lim_{x \to - 2^-} f(x) = \lim_{h \to 0} f( - 2 - h) = \lim_{h \to 0} \frac{- ( - 2 - h + 2)}{\tan^{- 1} ( - 2 - h + 2)} = \lim_{h \to 0} \frac{h}{\tan^{- 1} ( - h)} = - 1 . \]
(RHL at x = −2) =
\[\lim_{x \to - 2^+} f(x = \lim_{h \to 0} f( - 2 + h = \lim_{h \to 0} \frac{( - 2 + h + 2)}{\tan^{- 1} ( - 2 + h + 2)} = \lim_{h \to 0} \frac{h}{\tan^{- 1} (h)} = 1 .\]
Also
Therefore, given function is not continuous at x = − 2
APPEARS IN
RELATED QUESTIONS
If f (x) is continuous on [–4, 2] defined as
f (x) = 6b – 3ax, for -4 ≤ x < –2
= 4x + 1, for –2 ≤ x ≤ 2
Show that a + b =`-7/6`
Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x > 3):}` is continuous at x = 3.
Is the function defined by `f(x) = x^2 - sin x + 5` continuous at x = π?
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at x " = pi`
Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}` is a continuous function.
Determine the value of the constant k so that the function
\[f\left( x \right) = \begin{cases}\frac{\sin 2x}{5x}, if & x \neq 0 \\ k , if & x = 0\end{cases}\text{is continuous at x} = 0 .\]
If \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin } x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).
If \[f\left( x \right) = \begin{cases}\frac{x^2}{2}, & \text{ if } 0 \leq x \leq 1 \\ 2 x^2 - 3x + \frac{3}{2}, & \text P{ \text{ if } } 1 < x \leq 2\end{cases}\]. Show that f is continuous at x = 1.
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}kx + 5, & \text{ if } x \leq 2 \\ x - 1, & \text{ if } x > 2\end{cases}\]
The function f(x) is defined as follows:
If f is continuous on [0, 8], find the values of a and b.
If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]
for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].
Discuss the continuity of the following functions:
(i) f(x) = sin x + cos x
(ii) f(x) = sin x − cos x
(iii) f(x) = sin x cos x
Show that f (x) = cos x2 is a continuous function.
Show that f (x) = | cos x | is a continuous function.
What happens to a function f (x) at x = a, if
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
Let \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when
The function
If f is defined by \[f\left( x \right) = x^2 - 4x + 7\] , show that \[f'\left( 5 \right) = 2f'\left( \frac{7}{2} \right)\]
If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\]
The function f (x) = x − [x], where [⋅] denotes the greatest integer function is
The function f (x) = 1 + |cos x| is
The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is
Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\]
then at x = 0, f (x) is
If f.g is continuous at x = a, then f and g are separately continuous at x = a.
`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.
The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be
If `f`: R → {0, 1} is a continuous surjection map then `f^(-1) (0) ∩ f^(-1) (1)` is:
If `f(x) = {{:(-x^2",", "when" x ≤ 0),(5x - 4",", "when" 0 < x ≤ 1),(4x^2 - 3x",", "when" 1 < x < 2),(3x + 4",", "when" x ≥ 2):}`, then
The function f(x) = 5x – 3 is continuous at x =
What is the values of' 'k' so that the function 'f' is continuous at the indicated point
Find the values of `a` and ` b` such that the function by:
`f(x) = {{:(5",", if x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`
is a continuous function.
The function f(x) = x |x| is ______.
Discuss the continuity of the following function:
f(x) = sin x + cos x