English

If F ( X ) = { 1 − Cos X X Sin X , X ≠ 0 1 2 , X = 0 Then at X = 0, F (X) is (A) Continuous and Differentiable (B) Differentiable but Not Continuous (C) Continuous but Not Differentiable - Mathematics

Advertisements
Advertisements

Question

If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\] 

then at x = 0, f (x) is

Options

  • continuous and differentiable

  • differentiable but not continuous

  • continuous but not differentiable

  • neither continuous nor differentiable

MCQ

Solution

(a) continuous and differentiable 

we have, 

\[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\]

\[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\]
\[\text { Continuity at x } = 0\]
\[(\text { LHL at x }= 0) = {lim}_{x \to 0 -} f(x)\]
\[ = {lim}_{h \to 0} f(0 - h)\]
\[ = {lim}_{h \to 0} f( - h)\]
\[ = {lim}_{h \to 0} \frac{1 - \cos ( - h)}{( - h) \sin ( - h)} \]
\[ = {lim}_{h \to 0} \frac{1 - \cos h}{h \sin h}\]
\[ = {lim}_{h \to 0} 1 - \cos \ h \ {lim}_{h \to 0} \frac{1}{h \sin h}\]
\[ = 1 - \cos(0) . \frac{1}{0 \sin 0} \]
\[ = 0\]

\[(\text { RHL at x }= 0) = {lim}_{x \to 0^+} f(x)\]
\[ = {lim}_{h \to 0} f(0 + h)\]
\[ = {lim}_{h \to 0} f( h)\]
\[ = {lim}_{h \to 0} \frac{1 - \cos (h)}{(h) \sin (h)} \]
\[ = {lim}_{h \to 0} \frac{1 - \cos h}{h \sin h}\]
\[ = {lim}_{h \to 0} 1 - \cos\ h {lim}_{h \to 0} \frac{1}{h \sin h}\]
\[ = 1 - \cos 0 . \frac{1}{0 \sin 0}\]
\[ = 0\]

Hence, f(x)is continuous at x = 0.

For differentiability at x = 0

\[(\text { LHD at x }= 0 ) = {lim}_{x \to 0^-} \frac{f(x) - f(0)}{x - 0}\]
\[ = {lim}_{h \to 0} \frac{f(0 - h) - f(0)}{0 - h - 0} \]
\[ = {lim}_{h \to 0} \frac{f( - h) - \frac{1}{2}}{- h}\]
\[ = {lim}_{h \to 0} \frac{\frac{1 - \cos( - h)}{- h \sin( - h)} - \frac{1}{2}}{- h}\]
\[ = \frac{1}{h} {lim}_{h \to 0} $\frac{1 - \cos\ h}{h \sin h} - {lim}_{h \to 0} \frac{1}{2}\]
\[ = \frac{1}{2} - 0 = \frac{1}{2}\]

\[\text { RHD at x } = 0 ) = {lim}_{x \to 0^+} \frac{f(x) - f(0)}{x - 0}\]
\[ = {lim}_{h \to 0} \frac{f(0 + h) - f(0)}{0 - h - 0} \]
\[ = {lim}_{h \to 0} \frac{f( h) - \frac{1}{2}}{- h}\]
\[ = {lim}_{h \to 0} \frac{\frac{1 - \cos (h)}{- h \sin(h)} - \frac{1}{2}}{- h}\]
\[ = - \frac{1}{h} {lim}_{h \to 0} \frac{1 - \cos\ h}{h \sin h} - {lim}_{h \to 0} \frac{1}{2}\]
\[ = \frac{1}{2} - 0 = \frac{1}{2}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 10: Differentiability - Exercise 10.4 [Page 19]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 10 Differentiability
Exercise 10.4 | Q 24 | Page 19

RELATED QUESTIONS

For what value of `lambda` is the function defined by `f(x) = {(lambda(x^2 - 2x),  "," if x <= 0),(4x+ 1, "," if x > 0):}`  continuous at x = 0? What about continuity at x = 1?


Is the function defined by  `f(x) = x^2 - sin x + 5` continuous at x = π? 


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx +1, if x<= pi),(cos x, if x > pi):} " at  x " = pi`


Find the values of k so that the function f is continuous at the indicated point.

`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`


Find the values of a and b such that the function defined by `f(x) = {(5, "," if x <= 2),(ax +b, "," if 2 < x < 10),(21, "," if x >= 10):}`  is a continuous function.


Show that the function defined by f(x) = |cos x| is a continuous function.


Examine the continuity of the function  

\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]

Also sketch the graph of this function.


Find the values of a so that the function 

\[f\left( x \right) = \begin{cases}ax + 5, if & x \leq 2 \\ x - 1 , if & x > 2\end{cases}\text{is continuous at x} = 2 .\]

Let  \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.

 


If  \[f\left( x \right) = \begin{cases}\frac{\cos^2 x - \sin^2 x - 1}{\sqrt{x^2 + 1} - 1}, & x \neq 0 \\ k , & x = 0\end{cases}\]   is continuous at x = 0, find k.


If  \[f\left( x \right) = \frac{2x + 3\ \text{ sin }x}{3x + 2\ \text{ sin }  x}, x \neq 0\] If f(x) is continuous at x = 0, then find f (0).


If  \[f\left( x \right) = \begin{cases}2 x^2 + k, &\text{ if }  x \geq 0 \\ - 2 x^2 + k, & \text{ if }  x < 0\end{cases}\]  then what should be the value of k so that f(x) is continuous at x = 0.

 


Find the points of discontinuity, if any, of the following functions: 

\[f\left( x \right) = \begin{cases}x^3 - x^2 + 2x - 2, & \text{ if }x \neq 1 \\ 4 , & \text{ if } x = 1\end{cases}\]

 


If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]

for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].


If \[f\left( x \right) = \begin{cases}\frac{\sin^{- 1} x}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\]is continuous at x = 0, write the value of k.


Determine the value of the constant 'k' so that function 

\[\left( x \right) = \begin{cases}\frac{kx}{\left| x \right|}, &\text{ if }  x < 0 \\ 3 , & \text{ if } x \geq 0\end{cases}\]  is continuous at x  = 0  . 

 then f (x) is continuous for all
\[f\left( x \right) = \begin{cases}\frac{\left| x^2 - x \right|}{x^2 - x}, & x \neq 0, 1 \\ 1 , & x = 0 \\ - 1 , & x = 1\end{cases}\]  then f (x) is continuous for all

If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =

 


If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to 


The value of f (0), so that the function

\[f\left( x \right) = \frac{\left( 27 - 2x \right)^{1/3} - 3}{9 - 3 \left( 243 + 5x \right)^{1/5}}\left( x \neq 0 \right)\] is continuous, is given by 


The value of a for which the function \[f\left( x \right) = \begin{cases}\frac{\left( 4^x - 1 \right)^3}{\sin\left( x/a \right) \log \left\{ \left( 1 + x^2 /3 \right) \right\}}, & x \neq 0 \\ 12 \left( \log 4 \right)^3 , & x = 0\end{cases}\]may be continuous at x = 0 is

 


The function 

\[f\left( x \right) = \begin{cases}\frac{\sin 3x}{x}, & x \neq 0 \\ \frac{k}{2} , & x = 0\end{cases}\]  is continuous at x = 0, then k =

If  \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of

\[\lim_{x \to 4} \frac{f\left( x \right) - f\left( 4 \right)}{x - 4} .\]

If \[f\left( x \right) = \begin{cases}\frac{\left| x + 2 \right|}{\tan^{- 1} \left( x + 2 \right)} & , x \neq - 2 \\ 2 & , x = - 2\end{cases}\]  then f (x) is


If \[f\left( x \right) = a\left| \sin x \right| + b e^\left| x \right| + c \left| x \right|^3\] 


The function f (x) = x − [x], where [⋅] denotes the greatest integer function is


Let f (x) = |cos x|. Then,


The function \[f\left( x \right) = \frac{\sin \left( \pi\left[ x - \pi \right] \right)}{4 + \left[ x \right]^2}\] , where [⋅] denotes the greatest integer function, is


The function f(x) = `"e"^|x|` is ______.


Let f(x) = |sin x|. Then ______.


`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.


The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be


The function f(x) = x2 – sin x + 5 is continuous at x =


For what value of `k` the following function is continuous at the indicated point

`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2


The function f(x) = x |x| is ______.


Discuss the continuity of the following function:

f(x) = sin x + cos x


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×