Advertisements
Advertisements
प्रश्न
If \[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\]
then at x = 0, f (x) is
विकल्प
continuous and differentiable
differentiable but not continuous
continuous but not differentiable
neither continuous nor differentiable
उत्तर
(a) continuous and differentiable
we have,
\[f\left( x \right) = \begin{cases}\frac{1 - \cos x}{x \sin x}, & x \neq 0 \\ \frac{1}{2} , & x = 0\end{cases}\]
\[\text { Continuity at x } = 0\]
\[(\text { LHL at x }= 0) = {lim}_{x \to 0 -} f(x)\]
\[ = {lim}_{h \to 0} f(0 - h)\]
\[ = {lim}_{h \to 0} f( - h)\]
\[ = {lim}_{h \to 0} \frac{1 - \cos ( - h)}{( - h) \sin ( - h)} \]
\[ = {lim}_{h \to 0} \frac{1 - \cos h}{h \sin h}\]
\[ = {lim}_{h \to 0} 1 - \cos \ h \ {lim}_{h \to 0} \frac{1}{h \sin h}\]
\[ = 1 - \cos(0) . \frac{1}{0 \sin 0} \]
\[ = 0\]
\[(\text { RHL at x }= 0) = {lim}_{x \to 0^+} f(x)\]
\[ = {lim}_{h \to 0} f(0 + h)\]
\[ = {lim}_{h \to 0} f( h)\]
\[ = {lim}_{h \to 0} \frac{1 - \cos (h)}{(h) \sin (h)} \]
\[ = {lim}_{h \to 0} \frac{1 - \cos h}{h \sin h}\]
\[ = {lim}_{h \to 0} 1 - \cos\ h {lim}_{h \to 0} \frac{1}{h \sin h}\]
\[ = 1 - \cos 0 . \frac{1}{0 \sin 0}\]
\[ = 0\]
Hence, f(x)is continuous at x = 0.
For differentiability at x = 0
\[ = {lim}_{h \to 0} \frac{f(0 - h) - f(0)}{0 - h - 0} \]
\[ = {lim}_{h \to 0} \frac{f( - h) - \frac{1}{2}}{- h}\]
\[ = {lim}_{h \to 0} \frac{\frac{1 - \cos( - h)}{- h \sin( - h)} - \frac{1}{2}}{- h}\]
\[ = \frac{1}{h} {lim}_{h \to 0} $\frac{1 - \cos\ h}{h \sin h} - {lim}_{h \to 0} \frac{1}{2}\]
\[ = \frac{1}{2} - 0 = \frac{1}{2}\]
\[\text { RHD at x } = 0 ) = {lim}_{x \to 0^+} \frac{f(x) - f(0)}{x - 0}\]
\[ = {lim}_{h \to 0} \frac{f(0 + h) - f(0)}{0 - h - 0} \]
\[ = {lim}_{h \to 0} \frac{f( h) - \frac{1}{2}}{- h}\]
\[ = {lim}_{h \to 0} \frac{\frac{1 - \cos (h)}{- h \sin(h)} - \frac{1}{2}}{- h}\]
\[ = - \frac{1}{h} {lim}_{h \to 0} \frac{1 - \cos\ h}{h \sin h} - {lim}_{h \to 0} \frac{1}{2}\]
\[ = \frac{1}{2} - 0 = \frac{1}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the relationship between a and b so that the function f defined by `f(x)= {(ax + 1, if x<= 3),(bx + 3, if x > 3):}` is continuous at x = 3.
Discuss the continuity of the following function:
f (x) = sin x × cos x
Find the values of k so that the function f is continuous at the indicated point.
`f(x) = {(kx + 1, "," if x <= 5),(3x - 5, "," if x > 5):} " at x " = 5`
Show that the function defined by f(x) = |cos x| is a continuous function.
Examine the continuity of the function
\[f\left( x \right) = \left\{ \begin{array}{l}3x - 2, & x \leq 0 \\ x + 1 , & x > 0\end{array}at x = 0 \right.\]
Also sketch the graph of this function.
Let \[f\left( x \right) = \frac{\log\left( 1 + \frac{x}{a} \right) - \log\left( 1 - \frac{x}{b} \right)}{x}\] x ≠ 0. Find the value of f at x = 0 so that f becomes continuous at x = 0.
In each of the following, find the value of the constant k so that the given function is continuous at the indicated point; \[f\left( x \right) = \begin{cases}\frac{1 - \cos 2kx}{x^2}, \text{ if } & x \neq 0 \\ 8 , \text{ if } & x = 0\end{cases}\] at x = 0
Find the values of a and b so that the function f given by \[f\left( x \right) = \begin{cases}1 , & \text{ if } x \leq 3 \\ ax + b , & \text{ if } 3 < x < 5 \\ 7 , & \text{ if } x \geq 5\end{cases}\] is continuous at x = 3 and x = 5.
Discuss the continuity of the function
Find the points of discontinuity, if any, of the following functions:
Find the points of discontinuity, if any, of the following functions: \[f\left( x \right) = \begin{cases}\frac{\sin x}{x}, & \text{ if } x < 0 \\ 2x + 3, & x \geq 0\end{cases}\]
In the following, determine the value of constant involved in the definition so that the given function is continuou: \[f\left( x \right) = \begin{cases}2 , & \text{ if } x \leq 3 \\ ax + b, & \text{ if } 3 < x < 5 \\ 9 , & \text{ if } x \geq 5\end{cases}\]
The function f(x) is defined as follows:
If f is continuous on [0, 8], find the values of a and b.
If \[f\left( x \right) = \frac{\tan\left( \frac{\pi}{4} - x \right)}{\cot 2x}\]
for x ≠ π/4, find the value which can be assigned to f(x) at x = π/4 so that the function f(x) becomes continuous every where in [0, π/2].
What happens to a function f (x) at x = a, if
If the function \[f\left( x \right) = \frac{\sin 10x}{x}, x \neq 0\] is continuous at x = 0, find f (0).
Determine the value of the constant 'k' so that function f
If \[f\left( x \right) = \begin{cases}\frac{1 - \sin x}{\left( \pi - 2x \right)^2} . \frac{\log \sin x}{\log\left( 1 + \pi^2 - 4\pi x + 4 x^2 \right)}, & x \neq \frac{\pi}{2} \\ k , & x = \frac{\pi}{2}\end{cases}\]is continuous at x = π/2, then k =
If f (x) = (x + 1)cot x be continuous at x = 0, then f (0) is equal to
Let \[f\left( x \right) = \left\{ \begin{array}\\ \frac{x - 4}{\left| x - 4 \right|} + a, & x < 4 \\ a + b , & x = 4 \\ \frac{x - 4}{\left| x - 4 \right|} + b, & x > 4\end{array} . \right.\]Then, f (x) is continuous at x = 4 when
The function
If the function f (x) defined by \[f\left( x \right) = \begin{cases}\frac{\log \left( 1 + 3x \right) - \log \left( 1 - 2x \right)}{x}, & x \neq 0 \\ k , & x = 0\end{cases}\] is continuous at x = 0, then k =
If \[f \left( x \right) = \sqrt{x^2 + 9}\] , write the value of
The function f (x) = |cos x| is
Let f (x) = a + b |x| + c |x|4, where a, b, and c are real constants. Then, f (x) is differentiable at x = 0, if
If f(x) = 2x and g(x) = `x^2/2 + 1`, then which of the following can be a discontinuous function ______.
If f.g is continuous at x = a, then f and g are separately continuous at x = a.
`lim_("x" -> 0) (1 - "cos" 4 "x")/"x"^2` is equal to ____________.
`lim_("x" -> 0) (1 - "cos x")/"x sin x"` is equal to ____________.
Let `"f" ("x") = ("In" (1 + "ax") - "In" (1 - "bx"))/"x", "x" ne 0` If f (x) is continuous at x = 0, then f(0) = ____________.
The value of f(0) for the function `f(x) = 1/x[log(1 + x) - log(1 - x)]` to be continuous at x = 0 should be
The function f(x) = 5x – 3 is continuous at x =
For what value of `k` the following function is continuous at the indicated point
`f(x) = {{:(kx^2",", if x ≤ 2),(3",", if x > 2):}` at x = 2
Find the values of `a` and ` b` such that the function by:
`f(x) = {{:(5",", if x ≤ 2),(ax + b",", if 2 < x < 10),(21",", if x ≥ 10):}`
is a continuous function.
Discuss the continuity of the following function:
f(x) = sin x – cos x